• Title/Summary/Keyword: two dielectric layers

Search Result 68, Processing Time 0.029 seconds

Electrical Properties of Heterolayered PZT/PT Thick Films (이종층 PZT/PT 후막의 전기적 특성)

  • Nam, Sung-Pil;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.169-170
    • /
    • 2008
  • The heterolayered PZT/PT thick films were fabricated by two different methods - thick films of the PZT by screen printing method on alumina substrates electrodes with Pt, thin films of $PbTiO_3$ by the spin coating method on the PZT thick films and once more thick films of the PZT by the screen printing method on the $BaTiO_3$ layer The structural and the dielectric properties were investigated for effect of various stacking sequence of sol-gel prepared $PbTiO_3$ coating solution at interface of the PZT thick films. The insertion of $PbTiO_3$ interlayer yielded the PZT thick films with homogeneous and dense grain structure with the number of $PbTiO_3$ layers. The leakage current density of the PZT/$PbTiO_3-1$ film is less that $4.41{\times}10^{-9}\;A/cm^2$ at 5 V.

  • PDF

Studies on the fabrication of transmission line with high and low $Z_0$ using BCB layer (BCB를 이용한 High & Low$Z_0$전송선로 제작에 대한 연구)

  • 한효종;이성대;전영훈;윤관기;김삼동;황인석;이진구;류기현
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.57-60
    • /
    • 2002
  • In this paper, transmission lines with low and high characteristic impedance (Z$_{0}$) are fabricated and analyzed. The transmission lines are fabricated on the benzo-cyclo-butene (BCB) films of a low dielectric constant. For the low Z$_{0}$, two types of coplanar waveguide (CPW) structures are fabricated, which include bottom-ground and double-ground type. Measurement shows that Z$_{0}$ values for each CPW type are 7.3 and 9.4$\Omega$, respectively, at a signal line width of 100 #m. Whit the ratio between the spacing of bottom-ground and the signal line with becomes greater than 2.5, the Z$_{0}$ is nearly saturated. In addition, thin film microstrip lines fabricated using the BCB insertion layers show very low Z$_{0}$ of 25.5$\Omega$, and this impedance is ~64 % of the values obtained from the BCB-based CPW structures of the same line width. Measurement result of CPW on BCB layer is 100.5 Ω.s 100.5 Ω.

  • PDF

Effect of Secondary Electron Emission of Phosphor on the Plasma Display Panel Discharge

  • Song, Su-Bin;Park, Pil-Yong;Lee, Han-Yong;Sea, Jeong-Hyun;Kang, Kyung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.594-597
    • /
    • 2002
  • We studied the effect of secondary electron emission from the back plate of AC-PDP, on the ramp waveform driving of the system, using two-dimensional PDP cell discharge simulator. It is found that the secondary electron emission from back plate plays a significant role in getting a stable weak discharge during the ramping up of X-Y electrode voltage. This is because grounded address electrode acts as a cathode during the setup of surface charge, and the secondary electron emission from phosphor in the back plate must be large enough to accumulate surface charges on the dielectric layers without strong plasma discharge. We have concluded that the secondary electron emission coefficient(${\gamma}$) of phosphor, besides MgO, must be known to understand the characteristics of the PDP system. A few suggestions for improvement of the system is also made and tested.

  • PDF

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF

Electrical Properties of PZT/$BaTiO_3$/PZT Multilayer Thick Films (PZT/$BaTiO_3$/PZT 다층 후막의 유전특성)

  • Nam, Sung-Pill;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.123-124
    • /
    • 2006
  • The sandwiched PZT/$BaTiO_3$/PZT thick films were fabricated by two different methods thick films of the PZT by screen printing method on alumina substrateselectrodes with Pt, thin films of $BaTiO_3$ by the spin-coating method on the PZT thick films and once more thick films of the PZT by the screen printing method on the $BaTiO_3$ layer. The structural and the dielectric properties were investigated for effect of various stacking sequence of sol-gel prepared $BaTiO_3$ coating solution at interface of the PZT thick films, The insertion of BaTi03 interlayer yielded the PZT thick films with homogeneous and dense grain structure with the number of $BaTiO_3$ layers. The leakage current density of the $PZT/BaTiO_3-1$ film is less that $4.41{\times}10^{-9}A/cm^2$ at 5 V.

  • PDF

A Compact Feeding Structure for an Wide-band Array Antenna using a Microstrip Metamatreial UWB Power Divider (메타재질구조의 UWB 전력 분배기를 이용한 광대역 배열 안테나를 위한 급전부 설계)

  • Eom, Da-Jeong;Kahng, Sung-Tek;Park, Jeong-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1159-1163
    • /
    • 2012
  • In this paper, a new method is suggested to reduce the size of a wide-band array antenna. The power-divider for the feeding structure is made compact as ${\lambda}/8$ with the help of a novel Metamaterial UWB bandpass filter. This power divider is clearly different from others in that the proposed design uses microstrip structured Composite Right and Left-Handed (CRLH) filters, while others use two dielectric layers or long tapered transmission lines. In order to validate the proposed design method, the circuit and full-wave simulated results of the power divider with the Metamaterial UWB filters are compared to each other, and the Metamaterial properties of the structure are shown with the electric field at the ZOR and dispersion diagram. Furthermore, the antenna performance of the fabricated antenna with the power divider is measured and compared with the prediction. Also, the size reduction effect by the proposed scheme is addressed.

An Electric Double-Layer Capacitor Based on Eutectic Gallium-Indium Liquid Metal Electrodes (공융 갈륨-인듐 액체금속 전극 기반 전기이중층 커패시터)

  • KIM, JI-HYE;KOO, HYUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.627-634
    • /
    • 2018
  • Gallium-based liquid metal, e.g., eutectic gallium-indium (EGaIn), is highly attractive as an electrode material for flexible and stretchable devices. On the liquid metal, oxide layer is spontaneously formed, which has a wide band-gap, and therefore is electrically insulating. In this paper, we fabricate a capacitor based on eutectic gallium-indium (EGaIn) liquid metal and investigate its cyclic voltammetry (CV) behavior. The EGaIn capacitor is composed of two EGaIn electrodes and electrolyte. CV curves reveal that the EGaIn capacitor shows the behavior of electric double-layer capacitors (EDLC), where the oxide layers on the EGaIn electrodes serves as the dielectric layer of EDLC. The oxide thicker than the spontaneously-formed native oxide decreases the capacitance of the EGaIn capacitor, due to increased voltage loss across the oxide layer. The EGaIn capacitor without oxide layer exhibits unstable CV curves during the repeated cycles, where self-repair characteristic of the oxide was observed. Finally, the electrolyte concentration is optimized by comparing the CV curves at various electrolyte concentrations.

Interfacial Material Engineering for Enhancing Triboelectric Nanogenerators

  • Nguyen, Dinh Cong;Choi, Dukhyun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.218-227
    • /
    • 2022
  • Triboelectric nanogenerators (TENGs), a new green energy, that have various potential applications, such as energy harvesters and self-powered sensors. The output performance of TENGs has been improving rapidly, and their output power significantly increased since they were first reported owing to improved triboelectrification materials and interfacial material engineering. Because the operation of a TENG is based on contact electrification in which electric charges are exchanged at the interface between two materials, its output can be increased by increasing the contact area and charge density. Material surface modification with microstructures or nanostructures has increased the output performance of TENGs significantly because not only does the sharp micro/nano morphology increases the contact area during friction, but it also increases the charge density. Chemical treatment in which ions or functional groups are added has also been used to improve the performance of TENGS by modifying the work functions, charge densities, and dielectric constants of the triboelectric materials. In addition, ultrahigh output power from TENGs without using new materials or treatments has been obtained in many studies in which special structures were designed to control the current release or to collect the charge current directly. In this review, we discuss physical and chemical treatments, bulk modifications, and interfacial engineering for enhancing TENG performance by improving contact electrification and electrostatic induction.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

A Study of the Phase Relations Between the Reflected and Transmitted Light Waves at a Beam Splitter and Their Application to Interferometers (빔가르개에서 반사광과 투과광 사이의 위상 관계 고찰 및 간섭계 적용)

  • Son, Byungwoo;Choi, Hee Joo;Park, Ju Eun;Cha, Myoungsik
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In an amplitude-splitting interferometer, a beam splitter divides an input beam into two parts, which are superposed after propagating along separate paths, producing an interference effect. We have investigated the phase relation between the reflected and transmitted light waves at BS's made of lossless dielectric stacks. If we define the phases with proper reference planes, a definite phase relation exists, irrespective of the detailed structure of the layers in the BS. Although this results from the generalized Stokes relations, we have verified it numerically for two representative BS's with symmetric and asymmetric layer structures respectively. When we applied the phase relation to interferometers, we could determine the superposition state of the output beam (either constructive or destructive interference) for a general BS, and could verify that the light's energy was conserved.