• Title/Summary/Keyword: two dampers

Search Result 232, Processing Time 0.02 seconds

Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers

  • Javidan, Mohammad Mahdi;Nasab, Mohammad Seddiq Eskandari;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.645-664
    • /
    • 2021
  • There is a growing need of seismic retrofit of existing non-seismically designed structures in Korea after the 2016 Gyeongju and 2017 Pohang earthquakes, especially school buildings which experienced extensive damage during those two earthquakes. To this end, a steel multi-slit damper (MSD) was developed in this research which can be installed inside of partition walls of school buildings. Full-scale two-story RC frames were tested with and without the proposed dampers. The frames had structural details similar to school buildings constructed in the 1980s in Korea. The details of the experiments were described in detail, and the test results were validated using the analysis model. The developed seismic retrofit strategy was applied to a case study school building structure, and its seismic performance was evaluated before and after retrofit using the MSD. The results show that the developed retrofit strategy can improve the seismic performance of the structure to satisfy a given target performance level.

Configuration assessment of MR dampers for structural control using performance-based passive control strategies

  • Wani, Zubair R.;Tantray, Manzoor A.;Iqbal, Javed;Farsangi, Ehsan Noroozinejad
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.329-344
    • /
    • 2021
  • The use of structural control devices to minimize structural response to seismic/dynamic excitations has attracted increased attention in recent years. The use of magnetorheological (MR) dampers as a control device have captured the attention of researchers in this field due to its flexibility, adaptability, easy control, and low power requirement compared to other control devices. However, little attention has been paid to the effect of configuration and number of dampers installed in a structure on responses reduction. This study assesses the control of a five-story structure using one and two MR dampers at different stories to determine the optimal damper positions and configurations based on performance indices. This paper also addresses the fail-safe current value to be applied to the MR damper at each floor in the event of feedback or control failure. The model is mathematically simulated in SIMULINK/MATLAB environment. Linear control strategies for current at 0 A, 0.5 A, 1 A, 1.5 A, 2 A, and 2.5 A are implemented for MR dampers, and the response of the structure to these control strategies for different configurations of dampers is compared with the uncontrolled structure. Based on the performance indices, it was concluded that the dampers should be positioned starting from the ground floor, then the 2nd floor followed by 1st and rest of the floors sequentially. The failsafe value of current for MR dampers located in lower floors (G+1) should be kept at a higher value compared to dampers at top floors for effective passive control of multi-story structures.

Experimental Evaluation of Design Parameters for TLCD and LCVA (TLCD와 LCVA의 설계파라미터에 대한 실험적 평가)

  • Lee, Sung-Kyung;Min, Kyung-Won;Park, Ji-Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.403-410
    • /
    • 2009
  • In this paper, damping coefficients and effective masses of tuned liquid-type column dampers were quantitatively evaluated based on experimental results by using system identification technique. First, shaking table tests were performed for two types of tuned liquid-type column dampers. Then, the dynamic characteristics of dampers used in this study were experimentally grasped from harmonic wave excitation testing results of the dampers with various water level. Finally, damping ratios and effective masses of the dampers with varying water level were quantitatively evaluated from minimizing the errors between numerical and experimental results. It was confirmed from system identification results that damping ratio and effective mass are decreased as the water level of dampers is increased.

Experimental and numerical investigation on RC moment-Resisting frames retrofitted with NSD yielding dampers

  • Esfandiari, J.;Zangeneh, E.;Esfandiari, S.
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.339-347
    • /
    • 2022
  • Retrofitting in reinforced concrete structures has been one of the most important research topics in recent years. There are several methods for retrofitting RC moment-resisting frames. the most important of which is the use of steel bracing systems with yielding dampers. With a proper design of yielding dampers, the stiffness of RC frame systems can be increased to the required extent so that the ductility of the structure is not significantly reduced. In the present study, two experimental samples of a one-third scale RC moment-resisting frame were loaded in the laboratory. In these experiments, the retrofitting effect of RC frames was investigated using Non-uniform Slit Dampers (NSDs). Based on the experimental results of the samples, seismic parameters, i.e., stiffness, ductility, ultimate strength, strength reduction coefficient, and energy dissipation capacity, were compared. The results demonstrated that the retrofitted frame had very significant growth in terms of stiffness, ultimate strength, and energy dissipation capacity. Although the strength reduction factor and ductility decreased in the retrofitted sample. In general, the behavior of the frame with NSDs was evaluated better than the bare frame.

Rocking response of self-centring wall with viscous dampers under pulse-type excitations

  • Zhang, Lingxin;Huang, Xiaogang;Zhou, Zhen
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.215-226
    • /
    • 2020
  • A self-centering wall (SCW) is a lateral resistant rocking system that incorporates posttensioned (PT) tendons to provide a self-centering capacity along with dampers to dissipate energy. This paper investigates the rocking responses of a SCW with base viscous dampers under a sinusoidal-type pulse considering yielding and fracture behaviour of the PT tendon. The differences in the overturning acceleration caused by different initial forces in the PT tendon are computed by the theoretical method. The exact analytical solution to the linear approximate equation of motion is also provided for slender SCWs. Finally, the effects of the ductile behaviour of PT tendons on the rocking response of a SCW are analysed. The results demonstrate that SCWs exhibit two overturning modes under pulse excitation. The overturning region with Mode 1 in the PT force cases separates the safe region of the wall into two parts: region S1 with an elastic tendon and region S2 with a fractured tendon. The minimum overturning acceleration of a SCW with an elastic-brittle tendon becomes insensitive to excitation frequency as the PT force increases. After the plastic behaviour of the PT tendon is considered, the minimum overturning acceleration of a SCW is increased significantly in the whole range of the studied wg/p.

A novel longitudinal seismic self-centering system for RC continuous bridges using SMA rebars and friction dampers

  • Xiang, Nailiang;Jian, Nanyi;Nonaka, Tetsuya
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.435-444
    • /
    • 2022
  • This study proposes a novel longitudinal self-centering earthquake resistant system for reinforced concrete (RC) continuous bridges by using superelastic shape memory alloy (SMA) reinforcement and friction dissipation mechanism. The SMA reinforcing bars are implemented in the fixed piers to provide self-recentering forces, while the friction dampers are used at the movable substructures like end abutments to enhance the energy dissipation of the bridge system. A reasonable balance between self-centering and energy dissipation capacities should be well achieved by properly selecting the parameters of the SMA rebars and friction dampers. A two-span continuous bridge with one fixed pier and two abutments is chosen as a prototype for illustration. Different longitudinal earthquake resistant systems including the proposed one in this study are investigated and compared. The results indicate that compared with the designs of over-dissipation (e.g., excessive friction) and over-self-centering (e.g., pure SMAs), the proposed system with balanced design between self-centering and energy dissipation would perform satisfactorily in controlling both the peak and residual displacement ratios of the bridge system.

Design of supplemental viscous dampers in inelastic SDOF system based on improved capacity spectrum method

  • Li, Bo;Liang, Xing-Wen
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.541-554
    • /
    • 2007
  • A simplified yet effective design procedure for viscous dampers was presented based on improved capacity spectrum method in the context of performance-based seismic design. The amount of added viscous damping required to meet a given performance objective was evaluated from the difference between the total demand for effective damping and inherent damping plus equivalent damping resulting from hysteretic deformation of system. Application of the method is illustrated by means of two examples, using Chinese design response spectrum and mean response spectrum. Nonlinear dynamic analysis results indicate that the maximum displacements of structures installed with supplemental dampers designed in accordance with the proposed method agree well with the given target displacements. The advantage of the presented procedure over the conventional iterative design method is also highlighted.

Parameters identification of fractional models of viscoelastic dampers and fluids

  • Lewandowski, Roman;Slowik, Mieczyslaw;Przychodzki, Maciej
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.181-193
    • /
    • 2017
  • An identification method for determination of the parameters of the rheological models of dampers made of viscoelastic material is presented. The models have two, three or four parameters and the model equations of motion contain derivatives of the fractional order. The results of dynamical experiments are approximated using the trigonometric function in the first part of the procedure while the model parameters are determined as the solution to an appropriately defined optimization problem. The particle swarm optimization method is used to solve the optimization problem. The validity and effectiveness of the suggested identification method have been tested using artificial data and a set of real experimental data describing the dynamic behavior of damper and a fluid frequently used in dampers. The influence of a range of excitation frequencies used in experiments on results of identification is also discussed.

Assessment of post-earthquake serviceability for steel arch bridges with seismic dampers considering mainshock-aftershock sequences

  • Li, Ran;Ge, Hanbin;Maruyama, Rikuya
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.137-150
    • /
    • 2017
  • This paper focuses on the post-earthquake serviceability of steel arch bridges installed with three types of seismic dampers suffered mainshock-aftershock sequences. Two post-earthquake serviceability verification methods for the steel arch bridges are compared. The energy-absorbing properties of three types of seismic dampers, including the buckling restrained brace, the shear panel damper and the shape memory alloy damper, are investigated under major earthquakes. Repeated earthquakes are applied to the steel arch bridges to examine the influence of the aftershocks to the structures with and without dampers. The relative displacement is proposed for the horizontal transverse components in such complicated structures. Results indicate that the strain-based verification method is more conservative than the displacement-base verification method in evaluating the post-earthquake serviceability of structures and the seismic performance of the retrofitted structure is significantly improved.

Seismic response of adjacent buildings interconnected by viscous dampers considering soil-structure interaction

  • Yavuz S. Hatipoglu;Oguz A. Duzgun
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.165-181
    • /
    • 2023
  • The effectiveness of fluid viscous dampers (FVDs) on dynamic response mitigation of coupled two adjacent structures was investigated, considering soil-structure interaction (SSI) effects under earthquake excitation. A numerical procedure was employed to evaluate system response. The finite elements were used for the numerical treatment of the adjacent buildings and soil region. Viscous boundary conditions were used as special non-reflecting boundaries on the edges of finite soil region. According to the results, the FVDs were found to be very effective for dynamic response mitigation of the adjacent buildings, even if considering the soil medium. The results showed that the most affecting parameter on the system response was found to be soil type. It was also concluded that when adjacent structures coupled by FVDs, the maximum values of the roof displacements, the base shear forces, and the base bending moments could decrease up to around 50%. Changing in lateral stiffness of the one building has minor effects on the effectiveness of viscous dampers.