• Title/Summary/Keyword: two cracks

Search Result 821, Processing Time 0.028 seconds

Combined Effect of Fireproofing Gypsum Board on Residual Strength and Fire Resistance of Fiber Addition High Strength Concrete-Model Column (방화석고보드 부착이 섬유혼입 고강도 콘크리트 모의 기둥부재의 내화특성 및 잔존내력에 미치는 영향)

  • Yang, Seong-Hwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.442-450
    • /
    • 2012
  • In this study, fire resistance and residual strength were examined after the addition of PF fiber and bonding fireproofing gypsum board to a high strength concrete-model column of 50 MPa grade. At the beginning of the experiment, all the properties of base concrete appeared to satisfy the target range. In terms of the internal temperature record, a trend of slightly high temperature was shown when the fireproofing gypsum board was not bonding, and when the fireproofing gypsum board was bonding, as PF content increased gradually, the temperature was gradually lowered. In terms of the relationship, as time elapsed a low temperature was shown when fiber was mixed, and when the board was bonding, the trend of lower temperature could be confirmed. Meanwhile, in terms of spalling property, a severe explosive fracture was generated at PF 0%, and falling off was prevented as the fiber content was increased; however, discoloration and a multitude of cracks were discovered, and when the board was bonding, the trend in which the exterior became satisfactory when the content was increased emerged. In terms of the residual compressive strength, measuring of strength could not be performed at PF 0% without bonding of board, and the strength was increased as the fiber content was increased; however, there was a decrease in strength of about 30 ~ 40%, and in the case of PF 0% with the bonding of board, the strength could be measured; however, about an 80% decrease in strength was shown, and only about a 10 ~ 20% decline in strength was displayed, as the range of decrease was reduced as the fiber content was increased. Considering all of these factors, it was determined that a more efficient enhancement of fire resistance was obtained when two methods are applied in combination rather than when the PF fiber content and bonding of fireproofing gypsum board are utilized individually.

Relation of Intensity, Fault Plane Solutions and Fault of the January 20, 2007 Odaesan Earthquake (ML=4.8) (2007년 1월 20일 오대산 지진(ML=4.8)의 진도, 단층면해 및 단층과의 관계)

  • Kyung, Jai-Bok;Huh, Seo-Yun;Do, Ji-Yong;Cho, Deok-Rae
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.202-213
    • /
    • 2007
  • The Odaesan earthquake $(M_L=4.8)$ occurred near Mt. Odae, Jinbu-Myon, Pyongchang-Gun, Kangwon Province on January 20, 2007. It has a shallow focal depth about 10 km. Its felt area covers most of the southern peninsula except some southern and western inland area. The maximum MM intensity was VI in the areas including Jinbu, Doam, Kangreung, Jumunjin, and Pyongchang. In these areas, there was a very strong shaking that caused several cracks on the walls of buildings and houses, slates falling off the roof, tiles being off the wall, things falling off the desk, and rock falling from the mountains. In order to get fault plane solutions, grid searches were performed by fitting distributions of P-wave first-motion polarities and SH/P amplitude ratios for each event. The results showed that the main shock represented right-lateral strike-slip sense and two aftershocks, reverse sense. It seems that the seismogenic fault may be the NNE-SSW trending Weoljeongsa fault near the epicenter based on the distribution of epicenters (foreshock, main shock, and aftershocks), damage area, and fault plane solution. The distribution of the epicenters indicates that the length of the subsurface rupture is estimated to be about 2 km.

Long-term Behavior of Deck-plate Concrete Slab Reinforced with Steel Fiber (강섬유 보강 데크플레이트 콘크리트 슬래브의 장기 거동)

  • Hong, Geon-Ho;Hwang, Seung-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.30-38
    • /
    • 2017
  • Recently, research on the development of a composite slab system for shorting the construction period by simplifying the process by omitting the form work and the reinforcement placing is underway. The purpose of this study is to evaluate the long-term behavior of a simplified slab system that replaces the form work and tensile reinforcement using structural deck-plate and replaces the temperature reinforcement using steel fiber reinforced concrete. In the conventional composite deck-plate slab method, w.w.f is generally used for crack control by drying shrinkage. But previous research results by various researchers were pointed out it is not effective to control the shrinkage and temperature cracking. In this study, the long-term cracking and structural behavior of steel fiber reinforced deck plate slab specimen with two continuous spans constructed under typical load conditions were evaluated. Experimental results showed that the number and width of long-term cracks decreased remarkably in the simplified slab specimen, and the deflection was also decreased compared with conventional RC slab specimen. However, in the continuous end of the slab where the negative moment is applied, it is analyzed that reinforced details are necessary to control the crack width in the service load and to recover deflection at load removal.

An Experimental Study on the Shear Behavior of Reinforced Concrete Deep Beams Subject to Concentrated Loads (집중하중을 받는 철근콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • Lee, Jin-Seop;Kim, Sang-Sik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.191-200
    • /
    • 1999
  • The shear behavior of simply supported reinforced concrete deep beams subject to concentrated loads has been scrutinized experimentally to verify the influence of the structural parameters such as concrete strength, shear span-depth ratio, and web reinforcements. A total of 42 reinforced concrete deep beams with compressive strengths of 250 kg/$cm^2$ and 500 kg/$cm^2$ has been tested at the laboratory under one or two-point top loading. The shear span-depth ratio have been taken as three types of 0.4, 0.8 and 1.2, and the horizontal and vertical shear reinforcements ratio, ranging from 0.0 to 0.57 percent respectively. In the tests, the effects of the shear span-depth ratio, concrete strength and web reinforcements on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear and the shear behaviors of specimens were greatly affected by inclined cracks from the load application points to the supports in shear span. The load bearing capacities have changed significantly depending on the shear span ratio, and the efficiency of horizontal shear reinforcements were increased as the shear span-depth ratio decreased. The test results have been analyzed and compared with the formulas proposed by previous researchers and the design equation from the code. While the shear strengths obtained from the tests showed around 1.4 and 1.9 times higher than the values calculated by CIRIA guide and the domestic code, they were closely coincident with the formulas given by de Paiva's equation.

Hydrothermal Gold Mineralization of the Sambo Deposit in the Muan Area, Korea (무안 지역, 삼보 광상의 금광화작용)

  • Pak, Sang-Joon;Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.275-286
    • /
    • 2008
  • The Sambo gold deposit located nearby the Cretaceous Hampyeong basin is composed of gold quartz fine vein(the Jija vein) within Cretaceous rhyolite showing $N10{\sim}20W$ trends as well as $N5{\sim}10E$ trending quartz veins(the Pungja, Gwangsan and Pungjaji veins) in Precambrian gneiss. The gold vein typically displays the intermittent and irregular fine veins within rhyolite. Electrum is disseminated in wallrock along the fine cracks as well as coexists with hematite replacing pyrite. Ore-forming fluids from the mineralized vein($H_2O/-NaCl$ system, Th; $340{\sim}200^{\circ}C$, Salinity <2.7 eq. wt.% NaCl) and NE-trending veins($H_2O-NaCl/-CO_2$ system, Th; $400{\sim}190^{\circ}C$, salinity <7.9 eq. wt.% NaCl) are featured by dissimilar physicochemical conditions but their fluid evolution trends(boiling and mixing) are similar with each other. Gold veins of the Sambo deposit filled along NNW-trending tension crack are related to pull-apart basin evolution. Selective gold mineralization of the deposit reflect to dissimilarity between two ore-forming fluid sources. Consequently, gold veining of the Sambo deposit formed at shallow-crustal level and could be categorized into epithermal-type gold deposit related to tensional fractures filling triggered by Cretaceous geodynamics.

Fatigue Strength Evaluation of Steel-Concrete Composite Bridge Deck with Corrugated Steel Plate (절곡강판을 이용한 교량용 강-콘크리트 합성 바닥판의 피로 성능평가)

  • Ahn, Jin Hee;Sim, Jung Wook;Jeong, Youn Joo;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.731-740
    • /
    • 2008
  • This paper deals with the fatigue behavior and strength of a new-type of steel-concrete composite bridge deck. The new-type composite bridge deck consists of corrugated steel plate, welded T-beams, stud-type shear connectors and reinforced concrete filler. A total of eight composite bridge deck specimens were fabricated, the fatigue tests were conducted under four-point bending test with three different stress ranges in constant amplitude. According to the test results, the fatigue crack generated at the welding part of the corrugated steel plate, progressed down to the bottom of the steel plate and encountered the crack, which came out from the opposite side at the same position. After the two cracks were connected at the bottom of the steel plate, the lower flange was cut off and the fatigue crack developed up to the T-beam. And the displacements and strains of fatigue test specimens were increasing with cyclic loading number, these were changed sharply at the fatigue failure. The fatigue results are compared with the design S-N curves specified in the Korea Highway Bridge Design Specifications and data in NCHRP 102 and NCHRP 147 report. The new-type composite bridge deck has a stress category of C, which means that new-type composite bridge deck can be designed by the current fatigue design specifications provided for steel members.

Geological Environments and Deterioration Causes of the Buddhist Triad Cave in Gunwi, Korea (군위 삼존석굴의 지질환경과 훼손원인)

  • 황상구;김수정;이현우
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.407-420
    • /
    • 2002
  • The Buddhist Triad Cave in Gunwi (National treasure No. 109) consists of porphyritic biotite granite, and it has been deteriorated into microorganic smears, white films, brown rusts, granular decay, color changes, and joints by the same weathering factors as rain, moisture, temperature variation and microorganic living. Main origin is probably the rain that leaks into the cave along joints in Palgongsan granite, and then its moisture grows many microorganism and is frozen over during winter. The granites around the cave regularly develop two NEE and NWW joint sets that are conjugate to be a joint system. The NEE set extends far away with narrow joint spacings and affects the leakage of the rains, and is divided into 4 joint zones, among which J$_{m}$ and J$_{3}$ immediately affect the leaking water into the cave. An extensional Joint, in northern wall of the cave, was formed by toppling of the block between J$_{m}$and J$_{3}$joint zones from widening the Jm aperture by roots of a big pine tree, and passes through the J$_{m}$joint zone. This bypass allows no circulation of small rain, but a good circulation of heavy rain from influx to the cave for a long pathway. Many Joints and cracks, in the ceiling near the cave entrance, immediately get through the J$_3$ joint zone, and have a good circulation of small rain 10 mm. Both J$_{m}$and J$_{3}$ joint zones are, therefore, chief influxes that cause leakage of the rains.

Fire Resistance Behavior and Residual Capacity of Voided Slab Subjected to Fire According to Loading Condition (화재 시 하중 재하 조건에 따른 중공슬래브의 내화거동 및 잔존성능)

  • Choi, Hyun-Ki;Bae, Back-Il;Jung, Hyung-Suk;Choi, Chang-Sik;Choi, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2018
  • This study presents experimental investigation on the residual capacity of fire-damaged voided slabs according to loading conditions. In this study, two voided slab specimens were fabricated, and heated by ISO standard fire during 120 minutes with different loading conditions of presence of loading. These specimens were cooled down to room temperature, and the residual capacity of fire-damaged voided slabs was investigated. Based on test results, thermal distribution of voided slab through the depth of concrete sections is different by the loading conditions. The temperature of loaded specimen is rapidly elevated through the whole depth of concrete sections compared to the unloaded specimen. The residual strength of fire-damaged voided slab specimens are 60% and 66% of that of voided slab specimen without fire damage, and the residual stiffness of fire-damaged voided slab specimens decreases by 15%~23% of that of voided slab specimen without fire damage. In case of voided slab specimens subjected ISO standard fire, the loaded specimen shows the decrease of 10% in the residual strength and the decrease of 15% in the residual stiffness compared to the unloaded specimen. It seems to result from higher temperature of bottom reinforcements in the loaded specimen due to the cracks, and more extensive damage on concrete cover of reinforcements by spalling process according to load level.

A STUDY OF SHEAR BOND STRENGTH AND SURFACE CONDITION BETWEEN SURFACE TREATED PORCELAIN AND RESIN CEMENT (도재의 표면처리에 따른 레진시멘트와의 전단결합강도 및 표면상태에 관한 연구)

  • Park, Sang-Hyuck;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.144-155
    • /
    • 1997
  • This study evaluated shear bond strength between porcelain and resin cement according to various surface treatments of porcelain, and surface condition of debonded porcelain. 50 porcelain specimens(Celay block A2M7) and composite resin specimens(Clearfil Photo-Bright) were prepared, and divided into 5 experimental groups according to the treatment method of porcelain surface. 5 experimental groups by surface treatments were as follows; CONTROL Group : No surface treatment was done on the surface of porcelains. SAND Group : The surface of porcelains were sandblasted with $50{\mu}m$ aluminum oxide for 5 seconds. HF Group: The surface of porcelains were etched with 8% Hydrofluoric acid for 4 minutes. SIL Group: The surface of porcelains were coated with silane coupling agent and heated at $100^{\circ}C$ for 5 minutes. SAND+HF+SIL Group : The surface of porcelains were sandblasted with $50{\mu}m$ aluminum oxide for 5 seconds and etched with 8% Hydrofluoric acid for 4 minutes, and coated with silane coupling agent and heated at $100^{\circ}C$ for 5 minutes. After surface treatments on the prepared porcelain surface two pastes of Panavia 21$^{(R)}$ were mixed, they were applied between composite resin block and porcelain surface, and then excessive resin cements were removed, and its margin was surrounded with Oxyguard II. All specimens were stored for 24 hours in water at $37^{\circ}C$ and tested with Instron testing machine between porcelains and resin cements, and debonded porcelain surfaces were observed under Scanning Electon Microscope(Hitachi S-2300) at 20kvp. The values from each group were compared statistically by Student's t-test. The obtained results were as follows; 1. The shear bond strength without surface treatment of porcelain was the lowest among all experimental groups(p<0.05). 2. The detached porcelain surface with sandblasting alone had more remarkable cracks than with only Hydrofluoric Acid or Silane coupling 2gent, but showed the lowest value of shear bond strength among surface treated groups(p<0.05), 3. When porcelain surface was treated by hydrofluoric acid, it affected shear bond strength more than silane coupling agent, but there were no significant statistical differences(p>0.05). 4. When three methods were combined to increase shear bond strength between porcelains and resin cements, its value was the highest than the others(p<0.05). 5. In Scannig Electron Micrograph of detached porcelain surface with no treatment, the sample revealed adhesive failure between the porcelain and resin cement whereas detached porcelain surface with combination of three method cohesive failure on the porcelain.

  • PDF

Program Development to Evaluate Permeability Tensor of Fractured Media Using Borehole Televiewer and BIPS Images and an Assessment of Feasibility of the Program on Field Sites (시추공 텔리뷰어 및 BIPS의 영상자료 해석을 통한 파쇄매질의 투수율텐서 계산 프로그램 개발 및 현장 적용성 평가)

  • 구민호;이동우;원경식
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.187-206
    • /
    • 1999
  • A computer program to numerically predict the permeability tensor of fractured rocks is developed using information on discontinuities which Borehole Televiewer and Borehole Image Processing System (BIPS) provide. It uses orientation and thickness of a large number of discontinuities as input data, and calculates relative values of the 9 elements consisting of the permeability tensor by the formulation based on the EPM model, which regards a fractured rock as a homogeneous, anisotropic porous medium. In order to assess feasibility of the program on field sites, the numerically calculated tensor was obtained using BIPS logs and compared to the results of pumping test conducted in the boreholes of the study area. The degree of horizontal anisotropy and the direction of maximum horizontal permeability are 2.8 and $N77^{\circ}CE$, respectively, determined from the pumping test data, while 3.0 and $N63^{\circ}CE$ from the numerical analysis by the developed program. Disagreement between two analyses, especially for the principal direction of anisotropy, seems to be caused by problems in analyzing the pumping test data, in applicability of the EPM model and the cubic law, and in simplified relationship between the crack size and aperture. Aside from these problems, consideration of hydraulic parameters characterizing roughness of cracks and infilling materials seems to be required to improve feasibility of the proposed program. Three-dimensional assessment of its feasibility on field sites can be accomplished by conducting a series of cross-hole packer tests consisting of an injecting well and a monitoring well at close distance.

  • PDF