• 제목/요약/키워드: two cracks

Search Result 827, Processing Time 0.024 seconds

Interaction between two neighboring tunnel using PFC2D

  • Sarfarazi, V.;Haeri, Hadi;Safavi, Salman;Marji, Mohammad Fatehi;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.77-87
    • /
    • 2019
  • In this paper, the interaction between two neighboring tunnel has been investigated using PFC2D. For this purpose, firstly calibration of PFC was performed using Brazilian experimental test. Secondly, various configuration of two neighboring tunnel was prepared and tested by biaxial test. The maximum and minimum principle stresses were 0.2 and 30 MPa respectively. The modeling results show that in most cases, the tensile cracks are dominant mode of cracks that occurred in the model. With increasing the diameter of internal circle, number of cracks decreases in rock pillar also number of total cracks decreases in the model. The rock pillar was heavily broken when its width was too small. In fixed quarter size of tunnel, the crack initiation stress decreases with increasing the central tunnel diameter. In fixed central tunnel size, the crack initiation stress decreases with increasing the quarter size of tunnel.

A Study on the Recognition of Concrete Cracks using Fuzzy Single Layer Perceptron

  • Park, Hyun-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.204-206
    • /
    • 2008
  • In this paper, we proposed the recognition method that automatically extracts cracks from a surface image acquired by a digital camera and recognizes the directions (horizontal, vertical, -45 degree, and 45 degree) of cracks using the fuzzy single layer perceptron. We compensate an effect of light on a concrete surface image by applying the closing operation, which is one of the morphological techniques, extract the edges of cracks by Sobel masking, and binarize the image by applying the iterated binarization technique. Two times of noise reduction are applied to the binary image for effective noise elimination. After the specific regions of cracks are automatically extracted from the preprocessed image by applying Glassfire labeling algorithm to the extracted crack image, the cracks of the specific region are enlarged or reduced to $30{\times}30$ pixels and then used as input patterns to the fuzzy single layer perceptron. The experiments using concrete crack images showed that the cracks in the concrete crack images were effectively extracted and the fuzzy single layer perceptron was effective in the recognition of the extracted cracks directions.

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

Crack Detection in Mortar Beams using Optical Time Domain Reflectometry (광학적 시간영역 반사시스템을 이용한 모르타르 보의 균열 탐사)

  • Rhim, Hong-Chul;Lee, Kyoung-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.185-195
    • /
    • 2000
  • Detection of cracks in concrete beams using optical fiber sensors is useful for monitoring of concrete structures. In this study, optical time domain reflectometry (OTDR) is used to detect cracks. Resolution of OTDR is the main contributor to detect cracks in concrete structures. The OTDR used in this study can detect cracks with high precision of 0.5 m. Two mortar beams, reinforced with a 19 mm diameter steel bar, are made with the dimensions of 140 mm (width) ${\times}$ 200 mm (depth) ${\times}$ 2.000 mm (length). Two fibers are embedded inside each beam and two fibers are attached under the beams. The application of measurement system which consists of fiber and FC/PC connecter is studied. For this, theory of optics, resolution, crack moment, and size of specimens are investigated. From the measured data, it is verified that fibers which are attached under the beam can detect the crack in beams effectively. However, fibers embedded inside the beam are unable to detect cracks in beams using the OTDR in this study.

  • PDF

Evaluation of Plastic Collapse Behavior for Multiple Cracked Structures (다중균열 구조물의 소성붕괴거동 평가)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Hwang, Seong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1813-1821
    • /
    • 2004
  • Until now, the 40% of wall thickness criterion, which is generally used for the plugging of steam generator tubes, has been applied only to a single cracked geometry. In the previous study by the authors, a total number of 9 local failure prediction models were introduced to estimate the coalescence load of two collinear through-wall cracks and, then, the reaction force model and plastic zone contact model were selected as the optimum ones. The objective of this study is to estimate the coalescence load of two collinear through-wall cracks in steam generator tube by using the optimum local failure prediction models. In order to investigate the applicability of the optimum local failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two collinear through-wall cracks in steam generator tube were carried out. Thereby, the applicability of the optimum local failure prediction models was verified and, finally, a coalescence evaluation diagram which can be used to determine whether the adjacent cracks detected by NDE coalesce or not has been developed.

Numerical simulation on capillary absorption of cracked SHCC with integral water repellent treatment

  • Yao Luan;Tetsuya Ishida
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.123-135
    • /
    • 2024
  • Strain-hardening cement-based composites (SHCC) under cracked condition exhibits remarkable capillary absorption due to water ingress from multiple cracks. Surface treatment using water repellent agents is an effective way for improving water resistance of SHCC, but the water resistance may remarkably decrease when cracks penetrate impregnation depth. Another way is to add water repellent agents directly into the mixture, offering SHCC integral water repellency even if cracks form later. However, although integral water repellent treatment has been proved feasible by previous studies, there is still lack of simulation work on the treated SHCC for evaluating its durability. This study presents a simulation method for capillary absorption of cracked SHCC with integral treatment based on a multi-scale approach proposed in the authors' previous work. The approach deals with water flows in bulk matrix and multiple cracks using two individual transport equations, respectively, whereas water absorbed from a crack to its adjacent matrix is treated as the mass exchange of the two equations. In this study, the approach is enhanced for the treated SHCC by integrating the influencing of water repellency into the two transport equations as well as the mass exchange term. Using the enhanced approach, capillary absorption of water repellent SHCC under cracked condition is simulated, showing much more reduced water ingress than the untreated concrete, which is consistent with total absorption data from previous tests. This approach is also capable of simulating water spatial distribution with time in treated SHCC reasonably.

Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep

  • Victor I. Rizov;Holm Altenbach
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.15-29
    • /
    • 2023
  • In this paper, fracture analysis of a continuously inhomogeneous arch structure with two longitudinal cracks is developed in terms of the time-dependent strain energy release rate. The arch under consideration exhibits non-linear creep behavior. The cross-section of the arch is a rectangle. The material is continuously inhomogeneous along the thickness of the cross-section. The arch is loaded by two bending moments applied at its end sections. The mechanical behavior of the material is described by using a non-linear stress-strain-time relationship. The two longitudinal cracks are located symmetrically with respect to the mid-span of the arch. Due to the symmetry, only half of the arch is considered. Time-dependent solutions to strain energy release rate are obtained by analyzing the balance of the energy. For verification, time-dependent solutions to the strain energy release rate are derived also by considering the time-dependent complementary strain energy. The evolution of the strain energy release rate with the time is analyzed. The effects of material inhomogeneity, locations of the two cracks along the thickness of the arch and the magnitude of the external loading on the time-dependent strain energy release rate are evaluated.

Fracture Mechanics Analysis of a Reactor Pressure Vessel Considering Pressurized Thermal Shock (가압열충격을 고려한 원자로 압력용기의 파괴역학적 해석)

  • 박재학;박상윤
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.29-38
    • /
    • 2001
  • The purpose of this paper is to evaluate the structural integrity of a reactor pressure vessel subjected to the pressurized thermal shock(PTS) during the transient events, such as main steam line break(MSLB) and small break loss of coolant accident(SBLOCA). For postulated surface or subsurface cracks, variation curves of stress intensity factor are obtained by using the three different methods, including ASME section XI code anlysis, the finite element alternating method and the finite element method. From the stress intensity factor curves, the maximum allowable nil-ductility transition temperatures(RT/NDT/) are determined by the tangent criterion and the maximum criterion for various crack configurations and two initial transient events. As a result of the analysis, it is noted that axial cracks have smaller maximum allowable RT$_{NDT}$ values than same-sized circumferential cracks for both the transient events in the case of the tangent criterion. Axial cracks have smaller RT$_{NDT}$ values than same-sized circumferential cracks for MSLB and circumferential cracks have smaller values than axial cracks for SBLOCA in the case of the maximum criterion.

  • PDF

Fatigue Life Estimation of Cruciform Welded Joint Considering Multiple Collinear Surface Cracks (십자형 필렛용접 이음부의 복수균열 진전수명 평가)

  • Han Seung Ho;Shin Byung Chun;Kim Jae Hoon;Han Jeong Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1549-1557
    • /
    • 2004
  • Fatigue life of welded joints is governed by the propagation of multiple collinear surface cracks distributed randomly along weld toe. These cracks propagate under the mechanisms of mutual interaction and coalescence of the adjacent two cracks. To estimate the fatigue life, its influences on the above two mechanisms should be taken into account, which appear through the stress intensity factors disturbed mutually. However, it is difficult to calculate the stress intensity factors of the multiple surface cracks located in vicinity of weld toe due to its geometrical complexity. They are calculated normally by using the Μk-factors, but such Mk-factors are very rare in literature. In this study, the Μ$textsc{k}$-factors were obtained from a parametric study on crack length and depth, for which a finite element method is used. A fatigue test for a cruciform welded Joint was conducted and the fatigue life of the tested specimen was estimated using the present method with the informations obtained from the test, such as the number, size, and locations of the cracks. The estimated and measured fatigue life showed a good agreement.

Assessment of Steam Generator Tubes with Multiple Axial Through-Wall Cracks (축방향 다중관통균열이 존재하는 증기발생기 세관 평가법)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1741-1751
    • /
    • 2004
  • It is commonly requested that the steam generator tubes wall-thinned in excess of 40% should be plugged. However, the plugging criterion is known to be too conservative for some locations and types of defects and its application is limited to a single crack in spite of the fact that the occurrence of multiple through-wall cracks is more common in general. The objective of this research is to propose the optimum failure prediction models for two adjacent through-wall cracks in steam generator tubes. The conservatism of the present plugging criteria was reviewed using the existing failure prediction models for a single crack, and six new failure prediction models for multiple through-wall cracks have been introduced. Then, in order to determine the optimum ones among these new local or global failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two adjacent through-wall cracks in thin plate were carried out. Thereby, the reaction force model, plastic zone contact model and COD (Crack-Opening Displacement) base model were selected as the optimum ones for assessment of steam generator tubes with multiple through-wall cracks. The selected optimum failure prediction models, finally, were used to estimate the coalescence pressure of two adjacent through-wall cracks in steam generator tubes.