• Title/Summary/Keyword: two arch tunnel

Search Result 39, Processing Time 0.024 seconds

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

A Study on the Effect of Carrying Vertical Loads Over Embankment Piles (성토지지말뚝의 연직하중 분담효과에 관한 연구)

  • 홍원표;이광우
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.285-294
    • /
    • 2002
  • Embankment Piles, which is subjected to damage due to lateral movement of soft ground, can be classified into pile slab, cap beam pile, and isolated cap pile according to the installation pattern of pile cap. In the cap beam pile and the isolated cap pile method, the soil arch is developed by the different stiffness between pile and soil, and most embankment loads are transferred into embankment piles through soil arch. In these two methods, the difference of soil arch is that the soil arch of the cap beam pile method develops like the arch from of tunnel between cap beams and the soil arch of the isolated cap pile method develops like dome between isolated caps. Therefore, theoretical analysis methods on soil arching effect of the cap beam pile and the isolated cap pile method were respectively proposed according to their own arch form considering the limiting equilibrium of stresses in a crown of soil arch. And a series of model tests were performed both to investigate the load transfer by soil arching in fills above embankment piles and to verify the reliability of the theoretical analysis.

Investigation of soil behaviour due to excavation below the grouped pile according to shape of tunnel station (터널 정거장 형상에 따른 군말뚝 하부 굴착 시 지반거동 연구)

  • Kong, Suk-Min;Oh, Dong-Wook;Lee, Jong-Hyen;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.83-97
    • /
    • 2018
  • Tunnels are widely used for special purposes including roads, railways and culvert for power transmission, etc. Its cross-section shape is determined by uses, ground condition, environmental or economic factor. Many papers with respect to behaviours of adjacent ground and existing structure tunnelling-induced have been published by many researchers, but tunnel cross-section have rarely been considered. A collapse of tunnel causes vaster human and property damage than structures on the ground. Thus, it is very important to understand and analyse the relationship between behavoiurs of ground and cross-section type of tunnel. In this study, the behaviour of ground due to tunnel excavation for underground station below the grouped pile supported existing structure was analysed through laboratory model test using a trap-door device. Not only two cross-section types, 2-arch and box, as station for tunnel, but also, offset between tunnel and grouped pile centre (0.1B, 0.25B, 0.4B) are considered as variable of this study. In order to measure underground deformation tunnelling-induced, Close Range Photogrammetry technique was applied with laboratory model test, and results are compared to numerical analysis.

Designing an innovative support system in loess tunnel

  • Wang, Zhichao;Xie, Yuan;Lai, Jinxing;Xie, Yongli;Su, Xulin;Shi, Yufeng;Guo, Chunxia
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-266
    • /
    • 2021
  • The sufficient early strength of primary support is crucial for stabilizing the surroundings, especially for the tunnels constructed in soil. This paper introduces the Steel-Concrete Composite Support System (SCCS), a new support with high bearing capacity and flexible, rapid construction. The bearing characteristics and construction performance of SCCS were systematically studied using a three-dimensional numerical model. A sensitivity analysis was also performed. It was found that the stress of a π-shaped steel arch decreased with an increase in the thickness of the wall, and increased linearly with an increase in the rate of stress release. In the horizontal direction of the arch section, the nodal stresses of the crown and the shoulder gradually increased in longitudinally, and in the vertical direction, the nodal stresses gradually decreased from top to bottom. The stress distribution at the waist, however, was opposite to that at the crown and the shoulder. By analyzing the stress of the arch section under different installation gaps, the sectional stress evolution was found to have a step-growth trend at the crown and shoulder. The stress evolution at the waist is more likely to have a two-stage growth trend: a slow growth stage and a fast growth stage. The maximum tensile and compressive stresses of the secondary lining supported by SCCS were reduced on average by 38.0% and 49.0%, respectively, compared with the traditional support. The findings can provide a reference for the supporting technology in tunnels driven in loess.

Surgical Treatment of Carpal Tunnel Syndrome through a Minimal Incision on the Distal Wrist Crease: An Anatomical and Clinical Study

  • Yoo, Hye Mi;Lee, Kyoung Suk;Kim, Jun Sik;Kim, Nam Gyun
    • Archives of Plastic Surgery
    • /
    • v.42 no.3
    • /
    • pp.327-333
    • /
    • 2015
  • Background An anatomical analysis of the transverse carpal ligament (TCL) and the surrounding structures might help in identifying effective measures to minimize complications. Here, we present a surgical technique based on an anatomical study that was successfully applied in clinical settings. Methods Using 13 hands from 8 formalin-fixed cadavers, we measured the TCL length and thickness, correlation between the distal wrist crease and the proximal end of the TCL, and distance between the distal end of the TCL and the palmar arch; the TCL cross sections and the thickest parts were also examined. Clinically, fasciotomy was performed on the relevant parts of 15 hands from 13 patients by making a minimally invasive incision on the distal wrist crease. Postoperatively, a two-point discrimination check was conducted in which the sensations of the first, second, and third fingertips and the palmar cutaneous branch injuries were monitored (average duration, 7 months). Results In the 13 cadaveric hands, the distal wrist crease and the proximal end of the TCL were placed in the same location. The average length of the TCL and the distance from the distal TCL to the superficial palmar arch were $35.30{\pm}2.59mm$ and $9.50{\pm}2.13mm$, respectively. The thickest part of the TCL was a region 25 mm distal to the distal wrist crease (average thickness, $4.00{\pm}0.57mm$). The 13 surgeries performed in the clinical settings yielded satisfactory results. Conclusions This peri-TCL anatomical study confirmed the safety of fasciotomy with a minimally invasive incision of the distal wrist crease. The clinical application of the technique indicated that the minimally invasive incision of the distal wrist crease was efficacious in the treatment of the carpal tunnel syndrome.

Stability Analysis on the Intersection Area of Subway Tunnels by Observational Method (계측에 의한 지하철터널 교차부의 안정성 검토)

  • Kim Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.71-79
    • /
    • 2005
  • The stability of the intersection area of two tunnels is analyzed by observational method. The depth from ground surface to the intersected area is shallow and the geology around the area consists of soil and/or weathered rock. The tunnel is supported by reinforced protective umbrella method with 12 m long 3-layer steel-pipes and the intersected area is additionally reinforced with 6 m long rockbolts. The measured displacements are converged and mechanical stability of the intersected area of two tunnels is confirmed; tunnel arch settles to 6-7 mm at the crown and the sidewalls converges to about 5 mm. So based on the displacement measurements, the supporting system for the tunnel intersection proves to be effective to not only reduce the deformation of tunnels but also maintain the stability of tunnels.

An Experimental Study on the Behaviour of Tunnel Excavated in a Homogeneous Ground by Two-Stage Excavation (균질지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적 연구)

  • 김동갑;박승준;이상덕
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2004
  • In a shotcrete support system, the cooperation of the ground and the shotcrete lining makes it possible to transfer the shear stress to the shotcrete lining, which is dedicated to form a stable structure. In this study, a homogeneous model ground with constant strength was produced by using gypsum and the tunnel was excavated with a top heading method under the definite initial stress. During the excavation, the stress in the ground around the tunnel and the deformation of shotcrete lining were measured, The tensile stress was generated in tangential direction in the ground near the tunnel and in the shotcrete lining due to tunnel excavation. This shows the unified behavior of the ground and shotcrete lining, which is the most typical characteristic of the shotcrete support. As a result, the rates of in-situ stress during the excavation at a top boundary line was 9% and at top arch heading 15%. It was 48% right after excavating the heading and 94% before cutting the bench.

Performance Evaluation of High Strength Lattice Girder by Structural Analyses and Field Measurements (구조해석과 현장계측에 의한 고강도 격자지보재의 성능 평가)

  • Lee, Jeo-Won;Min, Kyong-Nam;Jeong, Ji-Wook;Roh, Byoung-Kuk;Lee, Sang-Jin;Ahn, Tae-Bong;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • This study examined structural analysis of supports in tunnel and displacement and underground stress of tunnel by measurement, in order to evaluate the performance of high-strength lattice girders developed as a substitute for H-profiles. According to the three-dimensional nonlinear structural analysis results of the tunnel support, the load and displacement relationship between the H-profiles and the high-strength lattice girders showed almost the same behavior, and the maximum load of the high-strength lattice girders were 1.0 to 1.2 times greater than the H-profiles. By the results of the three-dimensional tunnel cross-section analysis of the supports, the axial force was occurred largely in the lower left and right sides of the tunnel, and showed a similar trend to the field test values. In the results of the measurement of the roof settlement and rod extension, the final displacement of the steel arch rib (H-profile) and high-strength lattice girder section in tunnel was converged to a constant value without significant difference within the first management standard of 23.5 mm. According to the results of underground displacement measurement, the final change amount of the two support sections showed a slight displacement change, but converged to a constant value within the first management standard of 10 mm. By the results of measurement of shotcrete stress and steel arch rib stress, the final change amount of the two support sections showed a slight stress change, but converged to a constant value within the first management standard of 81.1 kg/㎠ and 54.2 tonf.

A preliminary study on economical efficiency of a room-and-pillar excavation method in comparison with 2-arch tunnelling method (2아치 터널 굴착 공법과의 비교를 통한 주방식 굴착 공법의 예비 경제성 검토 연구)

  • Lee, Chulho;Chang, Soo-Ho;Ahn, Sung-Youll;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.599-612
    • /
    • 2013
  • This study aims to investigate an economical efficiency of two excavation methods with respect to the room-and-pillar method for the underground space and conventional excavation method, i.e. 2-arch tunnelling method. For feasibility study, an excavation cost for both room-and-pillar method and 2-arch tunnelling method was estimated when the same space in operation was required. It was assumed that properties of reinforcements and rock were adopted from literatures. However, an excavation shape of the room-and-pillar method was assumed not to be the rectangular shape which is a general type in the room-and-pillar method but to be an arch shape in order to compare with the conventional excavation method (2-arch tunnelling) and to achieve the maximum bearing capacity of the structure during excavation. Consequently, the wider space in use or required and the better condition of rock we assumed, the more economical advantage we have in the room-and-pillar method than the 2-arch tunnelling method.

Comparison of Modelling Characteristics of Distinct Element Analysis Based on Implicit and Explicit Algorithm (Implicit 및 explicit 알고리즘에 기초한 개별요소 수치해석 방법의 모델링 특성 비교 연구)

  • 류창하
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.410-417
    • /
    • 2000
  • The distinct element method has been effectively applied to the analysis of stability and behavior of jointed rock masses. In this paper the modelling characteristics of different types of distinct element model were investigated. Arch tunnel examples were chosen to compare the calculation results of two computer codes, NURBM and CBLOCK, where the former is based on implicit algorithm, and the other on explicit one. CBLOCK calculations show that joint properties are very important parameters in the stability analysis and that the joint stiffness ratio associated with joint configuration could be used as an indicator, whereas NURBM differ from that. Some other disagreements were also identified.

  • PDF