• Title/Summary/Keyword: twisted yarn

Search Result 33, Processing Time 0.019 seconds

A Development of Brassiere Prototype for Attaching the Measuring Module of ECG and Body Movement while Sleeping (심전도 및 수면시 체동 측정 모듈 장착을 위한 브래지어 프로토타입 개발)

  • Kweon, Soo Ae;Sohn, Boo-hyun
    • Journal of Fashion Business
    • /
    • v.21 no.2
    • /
    • pp.78-90
    • /
    • 2017
  • In this study, brassiere prototype was developed for attaching the measuring module of ECG measurement and body movement while sleeping. For ECG measurement, textile electrodes was made of stretch fabric containing polyurethane in consideration of elasticity of brassiere band. It was used as a conductive yarn by silver coating on the warp. The textile electrodes was woven with twisted twill to increase the density of conductive yarns. The pressure of the brassiere band was enough to sensing stably the ECG, and the elastic band of the brassiere was designed to be wider than 3cm to install the textile electrodes inside, so that textile electrodes was close fitting to the skin at a constant pressure without lifting. The textile electrodes coated with silicon on rear was attached to brassiere elastic band, and the module was installed with a snap connector to textile electrodes of brassiere band. The module was suitable to monitering ECG measurement of a typical R peak, pulse rate and body movement while sleeping without interfering.

Studies on the Physical Properties of Twisted Yam Woven Fabrics by High Functional Covering Machine and Compound Twister (고성능 커버링기 및 복합연사기를 이용한 연사직물의 물성분석 연구)

  • Jun, Byung Ik;Song, Min Kyu;Choi, Jae Woo
    • Fashion & Textile Research Journal
    • /
    • v.2 no.3
    • /
    • pp.227-233
    • /
    • 2000
  • The purpose of this study was to develop the High Functional Covering machine and the Compound Twister to produce the high value added textile goods and to meet the consumer's needs. For the study, 8 yarns and 12 fabrics were made with two developed machines and the tensile characteristics of the samples were tested and analysed. The result indicated that the sample fabrics kept their elongation regardless of buffering process. Elongation of the sample yarns was higher than those of yarns made with a traditional covering method. Elastic recovery of the sample fabrics was more effected by the recovery rate than by the number of extension and the characteristics of the sample yarns and fabrics were comparable to the yarns and fabrics made with a traditional covering method in terms of the position of Spandex yarns in their yarn structure and buffering effect.

  • PDF

Properties in Strength of Raschel Netting (랏쉘그물감의 강도)

  • KIM Dai An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.39-48
    • /
    • 1978
  • 1) The decrease in strength of Raschel twines at Raschel joints is regarded to be due mainly to the frictional force between yarns and the unbalanced tensile distribution by the deformation of the joints. The rate of the decrease is about $13\%$ in lengthwise pull and 22 to $26\%$ in breadthwise pull. 2) The 3-course joint is less in deformation and stronger than the 2-course joint in all cases of pulls. 3) The variation of Raschel joint strength $T_R$ with the angle $\varphi$ between the adjacent bars is expressed as $T_R=T_{R0}-k\varphi$ where $T_{R0}$ is the strength at $\varphi=0^{\circ}$ and K is a constant. 4) The tensile strength ${\sigma}R$ and tile breaking energy $E_R$ of Raschel netting are given by $${\sigma}R=KN\;or\;${\sigma}R=T_RN$$ and $$E_R=AN$$ respectively, where N is the number of meshes at the pulling side, and K and A are constants. But the breaking energy of the netting is almost constant independent of tile variation of N. 5) The Raschel netting with some bars cut already breaks from tile joints of the bars next to the cut bars and its tensile strength, breaking energy, and breaking elongation decrease largily even if only one bar is in already cut state. 6) The tearing strength of Raschel netting is almost equal to the tensile strength of its single joint pulled by two bars. 7) The twisted joint is much more excellent in strength than the knot or the Raschel joint. The knot strength is 69 to $76\%$, and the Raschel joint strength is 71 to $74\%$ in lengthwise pull and 62 to $67\%$ in breadthwise pull, respectively, of the twisted joint strength.

  • PDF