• Title/Summary/Keyword: twist angle

Search Result 186, Processing Time 0.023 seconds

Automatic 3-D Modeling System for Cooling Fans Based on a Solid Modeler (솔리드 모델러 기반의 냉각탑용 축류팬 자동 설계시스템)

  • 이광일;강재관;김원일;이윤경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.141-144
    • /
    • 1997
  • This paper presents design automation system using API and parametric modeling of solid modeler, which is applied on axial fans for cooling towers. The design data including chord length and twist angle according to the fan length are given by design program, and API functions are applied to automate the modeling and assembly process of fan blade. The boss to connect fan and motor is designed with parametric design function provided by UG so as to be flexibly changed by the value of design parameters. The process of generating 2-D drafting for parts and an assembly is also automated. With developed system, the modeling time is reduced to 5 minutes even with unskilled operators.

  • PDF

A Study on the Bending Behavior of Single Worsted Yarns for the Clothing Material (I) -Theory- (피복 재료용 소모단사의 굽힘거동에 관한 연구(I) -이론-)

  • Park, Jung-Whan;Kim, Duk-Ly;Park, Jung-U
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.4
    • /
    • pp.443-451
    • /
    • 1994
  • The bending rigidity of yarn is derived in terms of physicil and mechanical characteristics of its constituent fibers and yarns structural parametrs. Theoretical analysis shows that the twist correcti on factor for the bending rigidity of yarn decreases with increase of the ratio of Young's m()dulus to the shear modulus of the constituent fibers. Also, the bending rigidity of yarn decreases as the surface helix angle of yarn increases.

  • PDF

A Study on Aerodynamic Analysis and Design of Wind Turbine Blade (풍력터빈용 날개 설계 및 공력해석에 관한 연구)

  • 김정환;이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.847-852
    • /
    • 2004
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio. structure. a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method This Process is programed by delphi-language. The Program has any input values such as tip speed ratio blade length. hub length. a section of shape and max lift-to-drag ratio. The Program displays chord length and twist angle by input value and analyzes performance of the blade.

Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi, Sang-Chul;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

Effect of Geometrical Similarity between Twist Drill on the Shape of Chip Produced (드릴의 기하학적 상사성이 칩형상에 미치는 영향)

  • 최만성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.513-518
    • /
    • 1999
  • In this study, geometrical similarity conditions for drills of various diameters are discussed. The effect of geometrical similarity on the chip shape and forces of different sized conventional drills has been experimentally confirmed. Drilling tests are carried out for SM45C by using the conventional HSS drills. The torque and thrust forces are measured and compared with those chip forms. Chip shape in drilling are affected by three factors being flow angle, side and up curl of the chip. It is found that the feedrate and drill diameter are more affected than cutting speed on the chip form and cutting forces. The similarity conditions gives easily to estimate the chip shape, the thrust and the torque for drills of different diameters.

  • PDF

A Study on Standard of Performance Evaluation for Paper Shredder (문서세단기 성능평가방법의 표준화에 관한 연구)

  • 이동규;유송민;이위로;노대호;김민호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.122-127
    • /
    • 2004
  • The purpose of this study is to introduce the standard of the durability and evaluation method for paper shredder. The major evaluation criteria include shredding capability, shredding blade (or cutter) hardness and edge roughness, and durability. Due to the difficulties in assessing the durability directly, performance deterioration of the shredder was assessed by measuring the torque variation along with the variation in shredded chip size and load, thereby proposing the indirect method of assessing the paper shredder durability.

  • PDF

AERODYNAMIC ANALYSIS AND OPTIMIZATION STUDY OF THE HELICOPTER ROTOR BLADE IN HOVERING FLIGHT (정지비행시 헬리콥터 로터 블레이드의 공력해석 및 최적화)

  • Je, S.E.;Jung, H.J.;Kim, D.J.;Joh, C.Y.;Myong, R.S.;Park, C.W.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.125-129
    • /
    • 2007
  • In this paper a method for the design optimization for helicopter rotor blade in hover is studied Numerical analysis of aerodynamic characteristics of the flow around a rotor blade is analysed by usign panel method and CFD code based on Navier-Stokes equation. The result is validated by comparing with existing experimental result. Optimization methods RSM(Response Surface Method) and DOE(Design of Experiments) are applied in combination. The object functions are power, twist angle, taper ratio, and thrust. The optimized result showed a decrease of 17% of the power required.

  • PDF

Torsion of Hypothetical Single-Wall Silicon Nanotubes (가상의 단일벽 실리콘 나노튜브의 비틀림)

  • 변기량;강정원;이준하;권오근;황호정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1165-1174
    • /
    • 2003
  • The responses of hypothetical silicon nanotubes under torsion have been investigated using an atomistic simulation based on the Tersoff potential. A torque, proportional to the deformation within Hooke's law, resulted in the ribbon-like flattened shapes and eventually led to a breaking of hypothetical silicon nanotubes. Each shape change of hypothetical silicon nanotubcs corresponded to an abrupt energy change and a singularity in the strain energy curve as a function of the external tangential force, torque, or twisted angle. The dynamics o silicon nanotubes under torsion can be modelled in the continuum elasticity theory.

Warping stresses of a rectangular single leaf flexure under torsion

  • Nguyen, Nghia Huu;Kim, Ji-Soo;Lee, Dong-Yeon
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.527-537
    • /
    • 2016
  • We describe a stress analysis of a single leaf flexure under torsion in which the warping effect is considered. The theoretical equations for the warping normal stress (${\sigma}_{xx}$) and shear stresses (${\tau}_{xz}$ and ${\tau}_{xy}$) are derived by applying the warping function of a rectangular cross-sectional beam and the twist angle equation that includes the warping torsion. The results are compared with those of the non-warping case and are verified using finite element analysis (FEA). A sensitivity analysis over the length, width, and thickness is performed and verified via FEA. The results show that the errors between the theory of warping stress results and the FEA results are lower than 4%. This indicates that the proposed theoretical stress analysis with warping is accurate in the torsion analysis of a single leaf flexure.

Spherulitic Morphologies of Poly(ethylene terephthalate), Poly(ethylene 2,6-naphthalate), and Their Blend

  • Lee, Jong-Kwan;Lee, Kwang-Hee;Jin, Byung-Suk
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.44-48
    • /
    • 2002
  • The supermolecular structures of poly(ethylene terephthalate) (PET), poly(ethylene 2,6-naphthalate) (PEN), and their blend were investigated with optical microscopy and small angle light scattering. With increasing the crystallization temperature, incomplete spherulitic texture was developed for the PET samples. At a high crystallization temperature of 220 $^{\circ}C$, the light scattering pattern represented a random collection of uncorrelated lamellae. The general morphological appearances for the PEN samples were similar to that of the PET. A notable feature was that the spherulites of the PEN formed at 200 $^{\circ}C$ showed regular concentric bands arising from a regular twist in the radiating lamellae. The spherulitic morphology of the PET/PEN blend was largely influenced by the changes of the sequence distribution in polymer chains determined by the level of transesterifcation. The increased sequential irregularity in the polymer chains via transesterification caused a morphological transition from a regular folded crystallite to a tilted lamellar crystallite.