• Title/Summary/Keyword: twin tunnel

Search Result 105, Processing Time 0.025 seconds

Characteristic of Wind Flow around Building Structures for Wind Resource Assessment (풍자원 평가를 위한 건축물 주변의 유동특성)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Shin, Seung-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.50-58
    • /
    • 2011
  • To utilize wind resources effectively around buildings in urban area, the magnitudes of wind velocity and turbulence intensity are important, which means the need of the information about the relationship between the magnitude of wind velocity and that of fluctuating wind velocity. In the paper, wind-tunnel experiments were performed to provide the information about Characteristic of Wind flow around buildings with the spanwise distance and the side ratio of buildings as variables. For a single building with the side ratios of one and two, the average velocity ratio was 1.4 and the velocity standard deviation ratio ranged from 1.4 to 2.6 at the height of 0.02m at the corner of the windward side, in which flow separation occurred. For twin buildings with the side ratios of one and two, the velocity ratio ranged from 2 to 2.5 as the spanwise distance varied at the height of 0.02m, and the velocity standard deviation ratio varied near 1.25. For twin buildings with the side ratios of one and two, the maximum velocity ratio was 1.75 at the height of 0.6m, and the maximum velocity standard deviation ratio was 2.1. It was also found from the results of CFD analysis and wind-tunnel experiments that for twin buildings with the side ratios of one and two, the difference between the velocity ratio of CFD analysis and that of wind-tunnel experiments at streamwise distances was near 0.75.

Influence of Pillar Width on the Stability of Twin Tunnels Using Scaled Model Tests (쌍굴터널 간 이격거리가 터널 안정성에 미치는 영향에 관한 모형실험 연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2015
  • Scaled model tests were performed to investigate the influence of pillar width, rock strength and isotropy/anisotropy on the stability of twin tunnels. Test models had respectively different pillar widths, uniaxial compressive strengths of modelling materials and model types, where both the deformation behaviors around tunnels and the biaxial pressure data at a time of pillar cracking were analysed. The cracking pressures of the higher strength models were higher than the lower strength models, whereas the percentage of cracking pressure to uniaxial compressive strength of modelling materials showed an opposite tendency. The cracking pressures of the shallower pillar width models were lower than the thicker models, moreover the percentage of that showed a same tendency. It has been found that the pillar width was one of the main factors influencing on the stability of twin tunnels. Model types such as isotropy/anisotropy also influenced on the stability of twin tunnels. The anisotropic models showed lower values of both cracking pressures and the percentage of that than the isotropic models, where the pillar cracks of anisotropic models were generated with regard to the pre-existing joint planes.

Case study for Stability Estimation of Subway Twin Tunnels Using Scaled Model Tests (축소모형실험을 통한 지하철 병설터널의 안정성평가 사례연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.425-438
    • /
    • 2019
  • A scaled model test was performed to evaluate the stability of subway twin tunnels excavated in the sedimentary rocks with subhorizontal bedding planes. The size of studied tunnel was 6.2 m×6.8 m and pillar width was 4 m. The anisotropic model test specimen was manufactured with the modeling materials suitable for in-situ rocks by way of dimensional analysis. Fracture and deformation behaviors of tunnels according to applied loads were investigated through the biaxial compression test. As the load was increased on the model specimen, the first crack occurred in the middle part of the pillar across twin tunnels and the gradual fractures progressed at crown and floor of twin tunnels. All the cracks in pillar were generated along the existing bedding planes so that they were found to be the main cause of the pillar failure. In addition, the test results were verified by numerical analysis on the experimental conditions using FLAC ubiquitous joint model. The distribution of plastic regions obtained from numerical analysis were in general agreement with test results, confirming the reliability of the scaled model test conducted in this study.

CONSTRUCTION OF SUBWAY TONNEL BENEATH EXISTING VEHICLE UNDERPASS

  • Kim, In-Kuin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1990.10a
    • /
    • pp.25-34
    • /
    • 1990
  • For the construction of twin single track subway tunnels by NATM within close proximity of existing vehicle underpass in the highly congested area of downtown Seoul, finite element analyses were performed to evaluate the ground responses during tunnelling and also the stability and safety of the underpass structure and subway tunnels. Results of the analyses indicated the need to improve the soil beneath the underpass, and pre-grouting was carried out prior to the tunnel excavation. During tunnel construction field measurement program was implemented to confirm the results of anslyses and to control the tunnel construction procedures, thus ensuring stability of the existing structres.

  • PDF

Wind-induced response of a twin-tower structure

  • Xie, Jiming;Irwin, Peter A.
    • Wind and Structures
    • /
    • v.4 no.6
    • /
    • pp.495-504
    • /
    • 2001
  • With a newly developed multi-force-balance system(MFB), a twin-tower structure was studied for its wind-induced responses. The MFB system allowed the twin towers, which were linked structurally, to be treated as a single structural system with its corresponding modes of vibration involving coupled motions of the two towers. The towers were also studied using a more conventional force balance approach in which each tower was treated as an isolated structure, i.e., as though no structural link existed. Comparison of the results reveals how the wind loads between the towers are redistributed through the structural links and the modal couplings. The results suggest that although the structural links usually have beneficial impacts on wind-induced response, they may also play a negative role if the frequency ratios of pair modes are near 1.0.

Static stress analysis of multi-layered soils with twin tunnels by using finite and infinite elements

  • Yusuf Z. Yuksel;Seref D. Akbas
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.369-380
    • /
    • 2023
  • The aim of this paper is to investigate stress analysis of semi-infinite soils consisting of two layers with twin rectangular tunnels under static loads. The region close to the ground surface and tunnel modelled within finite elements. In order to use a more realistic model, the far region is modelled within infinite elements. The material model of the layered soil is considered as elastic and isotropic. In the finite element solution of the problem, two dimensional (2D) plane solid elements are used with sixteen-nodes rectangular finite and eight-nodes infinite shapes. Finite and infinite elements are ordered to be suitable for the tunnel and the soils. The governing equations of the problem are obtained by using the virtual work principle. In the numerical process, the five-point Gauss rule is used for the calculation of the integrations. In order to validate using methods, comparison studies are performed. In the numerical results, the stress distributions of the two layered soils containing twin rectangular tunnels presented. In the presented results, effects of the location of the tunnels on the stress distributions along soil depth are obtained and discussed in detail. The obtained results show that the locations of the tunnels are very effective on the stress distribution on the soils.

On the Cautious blasting pattern of Weak zone of NAMSAN NO. twin Tunneling (남산1호터널 쌍굴 굴진공사 정밀발파 작업에 대한 안전도검토)

  • Huh, Ginn
    • Explosives and Blasting
    • /
    • v.8 no.4
    • /
    • pp.3-22
    • /
    • 1990
  • The $\varphi{4.5}$ meters pilot tunneling work is almost done to the $\varphi{11.3}$ meters twin tunnel of NAM SAN No1. The south side pit of 400 meters is weak zone of Rock status, so client request us to allow the cautious blasting pattern for drilling on the condition of 0.2 kine vibration allowance limited for the safety of side running tunnel. The pattern of cautious blasting carried out by 6 time divided fiving on the round drilling depth of 1.20 meters(1.10) and also applied control blasting method with line drilling due to the reduction of vibration.

  • PDF

Considerable Parameters and Progressive Failure of Rock Masses due to the Tunnel Excavation (터널 굴착시 고려해야 할 주변앙반의 매개변수와 진행성 파괴)

  • 임수빈;이성민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.231-234
    • /
    • 1994
  • Concentrated stresses due to the tunnel excavation easily cause failure around opening in the soft rock mass layer. Thus, while excavatng tunnel in the soft rock mass layerm it is very important to predict the possibility of failure or yielding zones around tunnel boundary. There are two typical methods to predict these; 1) the analysis of field monioring data and 2) numerical analysis. In this study, it was attempted to describe the time-dependent or progressive rock mass manner due to the continuous failure and fracturing caused by surrounding underground openings using the second method. In order to apply the effects of progressive failure underground, an iterative technique was used with the Hoek and Brown rock mass failure theory. By developing and simulating, three different shapes of twin tunnels, this research simulated and estimated the proper size of critical pillar width between tunnels, distributed stresses on the tunnel sides, and convergences of tunnel crowns. Moreover, results out progressive failure technique based on the Hoek and Brown theory were compared with the results out of Mohr-Coulomb theory.

  • PDF

Aerodynamic Forces Acting on Yi Sun-sin Bridge Girder According to Reynolds Numbers (레이놀즈수에 따른 이순신대교 거더에 작용하는 공기력의 변화)

  • Lee, Seung Ho;Yoon, Ja Geol;Kwon, Soon Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.93-100
    • /
    • 2013
  • The objective of present study is to investigate the sensitivity of aerostatic force coefficients of twin box girder of Yi Sun-sin Bridge according to the Reynolds numbers. This paper presents the 1:30 scale sectional model tests conducted at high speed wind tunnel in Korea Air Force Academy. Comparison with results at low Reynolds number obtained in KOCED Wind Tunnel Center in Chonbuk National University is also provide. The Reynolds number dependency of aerodynamic force coefficients were observed at present streamlined twin box girder. The drag coefficient revealed significant decrease of nearby 23% at supercritical region. The boundary layer trip strip was found to reduce the Reynolds number dependency of aerodynamic forces by fixing the location of flow transition.

A Study on the Stability of Asymmetrical Twin Tunnels in Alternating Rock Layers Using Scaled Model Tests (호층암반내 비대칭 쌍굴터널의 안정성에 관한 모형실험 연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 2012
  • In this study, scaled model tests were performed to investigate the stability of an asymmetrical twin tunnels constructed in rock mass comprising alternating layers of sandstone and shale. Each of tunnels had a differently shaped section, where the one was already constructed tunnel including lining structure but the other was planned to be under construction. Four types of test models which had respectively different pillar widths and loading conditions were experimented, where both crack initiating pressures and deformation behaviors around tunnels were investigated. The cracks of pillar mainly began to appear at the interfaces of alternating layers, following additional shear displacement between layers was confirmed as one of the most important factors of pillar failure in case of the model of pillar width 0.5D. The models with shallower pillar widths proved to be unstable because of lower crack initiating pressures and more tunnel convergences than the models with thicker pillar widths. The failure and deformation behaviors of tunnels were also dependent on the loading conditions, where the model of coefficient of lateral pressure 1.0 was more stable than the other model. Futhermore, the results of FLAC analysis were qualitatively coincident with the experimental results.