• Title/Summary/Keyword: twin roll

Search Result 60, Processing Time 0.026 seconds

Effect of Microstructure on the Properties of High Strength Hardened Cement Paste(I) (고강도 시멘트 경화체의 특성에 미치는 미세구조의 영향(I))

  • 김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.861-868
    • /
    • 1990
  • Investigation for the preparation of high strength hardened cement paste using ordinary portland cement, hydroxypropyl methyl cellulose(HPMC) with SiC powder was carried out. The cement paste was mixed with 0.1 of water cement ratio by twin roll mill and cured 60 days in humidity chamber. The hydration degree of cement paste cured with W/C=0.1 in 60 days was about 30% and most pores in the paste were found to be existed as gel pores of diameter less than 0.01㎛. The maximum flexural strength of hardened cement paste was about 960kg/㎠. When the SiC powder was added to the paste, the flexural strength was 1000∼1100kg/㎠ and the Young's modulus was 8∼9×105kg/㎠.

  • PDF

Effect of Admixture on the Properties of High Strength Hardened Cement Paste (고강도 시멘트 경화체의 특성에 미치는 혼합재의 영향)

  • 김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.495-500
    • /
    • 1990
  • Investigation for the preparation of high strength hardened cement paste using ordinary portland cement, hydroxypropyl methyl cellulose (HPMC) with admixtures was carried out. For molding of the specimen, the paste was mixed with 0.1 of water cement ratio by twin roll mill. The maximum flexural strength of dried hardened cement paste was about 600∼700kg/㎠. When the SiC was added to the paste, the dry flexural strength was about 920kg/㎠ and the young's modulus was 5.2×105kg/㎠. When the admixtures were added to the specimens, wet strength of the harened cement paste immersed in water was showed around 50∼100kg/㎠ higher than that of plain specimen. Consequently it is recognized the water stability of hardened cement paste was remarkably improved by adequate admixture.

  • PDF

Yield and Compaction Behavior of Rapidly Solidified AI-Si Alloy Powders (급속응고 Al-Si 합금 분말의 항복과 압축거동)

  • 김형섭;장기태;조성석;천병선
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.145-151
    • /
    • 1997
  • In order to obtain high quality products in powder metallurgy, it is important to control and understand the densification behavior of metal powders. The effect of the characters of powders on the compaction behavior was studied in this study by using three types of powders produced by the gas atomization, the centrifugal atomization and the twin roll-pulverization. The shape of the powders was a major factor in the apparent or tap density, and the deformation resistance of the matrix of the powders was a major factor in compactibility. Han's yield function (eq.2) for metal powders was simplified from the relationship based on the experimental results of copper powders. In spite of some assumptions, the calculated compaction curves using a new yield functionw was in accordance with the experimental results.

  • PDF

A Fabrication and Antifogging Performance of Random Polypropylene Film Containing Monoglycerides as Antifogging Agent

  • Jo, Wan;Park, Jin Hwan;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.217-222
    • /
    • 2021
  • In this study, random polypropylene (rPP) was compounded with two of monoglycerides, namely, glyceryl monolaurate (GML) and glyceryl monostearate (GMS), as antifogging agents to improve its antifogging performance. rPP film samples were prepared by a film-casting method using a three-roll casting machine after melt blending through a twin screw extruder. With an increase in the monoglyceride content, the melt flow index for rPP films with GML and GMS increased, and their yield strength decreased. The incorporation of GMS in rPP was proven to be more effective in improving its physical properties than was rPP with GML. When GML and GMS were separately added to the rPP film at contents of more than 1 phr and more than 5 phr, respectively, the film exhibited antifogging performance.

Effect of Microstructure Control on the Tensile and Erosion Properties of 3527/4343 Aluminum Clad (3527/4343 알루미늄 클래드재의 인장 및 침식특성에 미치는 미세조직 제어의 영향)

  • Euh, K.;Kim, S.H.;Kim, H.W.;Kim, D.B.;Oh, Y.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.264-268
    • /
    • 2013
  • Aluminum clad sheets for brazing materials in the automotive heat exchangers are required to exhibit both high strength and excellent erosion resistance. In this study, the effects of microstructural changes on the property of clad sheets due to thermomechanical treatment were investigated. The clad sheets were fabricated by roll bonding of twin-roll-cast AA3527 and AA4343 alloys followed by cold rolling down to a thickness of 0.22mm. Partial or full annealing was conducted at the final thickness in order to improved the erosion resistance while keeping the proper strength. Since full annealing was achieved for a temperature of $400^{\circ}C$, annealing treatments were performed at 360, 380, and $400^{\circ}C$, respectively. The tensile strength of 3527/4343 clad material was found to be inversely proportional to the annealing temperature before the brazing heat treatment. After this latter treatment, however, the tensile strength of the clad material was about 195~200MPa regardless of the annealing temperature. The erosion depth ratio of the clad annealed at $400^{\circ}C$ was 8.8% (the lowest), while that of the clad annealed at $380^{\circ}C$ was 17% (the highest). The effect of annealing temperature on the tensile and erosion properties of 3527/4343 aluminum clad sheets was elucidated by means of microstructural analyses.

THE DESIGN OF DGPS/INS INTEGRATION FOR IMPLEMENTATION OF 4S-Van (4S-Van 구현을 위한 DGPS/INS 통합 알고리즘 설계)

  • 김성백;이승용;김민수;이종훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.351-366
    • /
    • 2002
  • In this study, we developed low cost INS and (D)GPS integration for continuous attitude and position and utilized it for the determination of exterior orientation parameters of image sensors which are equipped in 4S-Van. During initial alignment process, the heading information was extracted from twin GPS and fine alignment with Kalman filter was performed for the determination of roll and pitch. Simulation and van test were performed for the performance analysis. Based on simulation result, roll and pitch error is around 0.01-0.03 degrees and yaw error around 0.1 degrees. Based on van test, position error in linear road is around 10 cm and curve around 1 m. Using direct georeferencing method, the image sensor's orientation and position information can be acquired directly from (D)GPS/INS integration. 4S-Van achieved 3D spatial data using (D)GPS/INS and image data can be applied to the spatial data integration and application such as contemporary digital map update, road facility management and Video GIS DB.

용탕직접압연된 Al-Mg-Mn 합금판재의 기계적 특성

  • Kim, Hyeong-Uk;Kim, Min-Gyun;Im, Cha-Yong;Gang, Seok-Bong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.43.2-43.2
    • /
    • 2009
  • Al-Mg 알루미늄 합금은 강도가 높고 성형성이 우수하여 수송기기 경량화용 소재로서 사용량이 증가하고 있다. 특히고강도 특성을 보이는 Al-Mg-Mn합금은 자동차, 선박및 철도차량등의 형재 및 판재로 그 사용량이 증가하고 있다. 또한 결정립을 미세화 시킨 Al-Mg-Mn합금판재의 경우에는 온간성형으로 복잡한 형상의 판재부품제조에 사용되고 있다. 연속주조공정인 Twin roll strip casting(TRC)은용탕으로부터 직접 판재를 생산할 수 있는 공정으로 주로 순알루미늄계열의 판재 생산에 사용되고 있으나 최근에는 고강도 판재의 저비용 생산을 위하여 고합금계 판재에 적용하는 연구가 수행되고 있다. 합금량이 높은 고강도Al-Mg계 합금의 TRC 주조시 고액공존구간이 커서 더욱 정밀한 공정제어가 필요하다. 또한 기존의 슬라브주조방식보다 높은 냉각속도로 주조가 가능하기 때문에 결정립 및 정출상의 미세화공정으로 응용되기도한다. 본 연구에서는 TRC공정을 기초로 주조시 열간 압연의효과를 동시에 부여하는 용탕직접압연공정을 개발하였으며 상용 고강도 알루미늄 합금인 5083합금 판재를제조하였다. 또한 기존 Al-Mg 합금에 Mn을 첨가하여 용탕직접압연함으로서 정출상의 크기 및 밀도를 제어하여 강도가 우수한 Al-Mg-Mn 합금판재를 제조하는 기술을 개발하였다. 용탕직접압연된 Al-Mg-Mn계 합금의 경우에 주조시 높은 냉각속도로 인하여 결정립이 미세하고 Al6Mn과 같은 미세한 정출상이 다량 형성되었으며, 최종압연 및 열처리에 의하여 높은 강도를 갖는 고강도 알루미늄 합금 판재의 제조가 가능하였다.

  • PDF

Effect of the Tertiary Recrystallization on the Magnetic Properties of High Silicon Iron (고규소철 강판의 자기적 특성에 미치는 3차 재결정의 영향)

  • Koo, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.246-254
    • /
    • 1997
  • The 6.5wt %Si-Fe alloy sheets were made by the twin roll process. The magnetic properties and microstructures of sheets annealed in the sulfur atmosphere were studied. In the as-prepared sheet, non-oriented columnar grains about $10{\mu}m$ in diameter were observed, which grew from the surface to the inner part of the sheet. When the annealing temperature was around $700^{\circ}C$, the primary recrystallization was formed around the middle part of the sheet thickness, and the grain size increased with increasing annealing temperature. At the annealing temperature of $900^{\circ}C$, the grain size became $30{\sim}40{\mu}m$. Around the annealing temperature, the motive force of the grain growth is the grain boundary energy. However, above $1000^{\circ}C$ the surface energy played an important role in the observed grain growth. When the sheet were annealed at $1200^{\circ}C$, the grains whose (100) planes were paralled to the thin plate surface grew, and all sheet surfaces were covered with these grains after 1 hour annealing. This phenomenon is called tertiary recrystallization. A difference in surface energy between (100) and (110) surfaces provides a driving force for growth of tertiary grains. The coercive force was 0.27 mOe and the AC core loss $W_{12/50}$ was 0.38w/kg for the 6.5wt%Si-Fe alloy.

  • PDF

A Study on the Microstructures and Mechanical Properties of Strip-Cast Ductile Cast Iron (스트립캐스팅한 구상흑연주철 박판의 미세조직과 기계적 성질에 관한 연구)

  • Choi, Kyu-Taek;Park, Jae-Young;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.77-83
    • /
    • 1999
  • Strip casting process, a new casting technology which makes thin strip of $0.5{\sim}5\;mm$ thickness directly from molten metal, has been dramatically developed for past 10 years and faced commercialization in the case of STS304 strip. In this study, ductile cast iron strip which is 1.1 mm thick and 100 mm wide is manufactured by the twin roll strip caster. Graphite and matrix structure of the strip can be controlled through heat treatments and the mechanical properties are examined. The microstructure of the as-cast strip consists of cementite and pearlite. Especially the equiaxed crystal zone of pearlite exists in the center region of the thickness due to the characteristics of the strip casting process. Matrix structure can be transformed into fully ferrite or ferrite/pearlite mixed structures by the different graphitization heat treatments. The heat-treated strip with ferrite/pearlite matrix structure showed higher hardness and tensile strength than that with full ferrite matrix structure.

  • PDF

Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting (스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화)

  • Lee, Gi-Rak;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF