• Title/Summary/Keyword: turning operation

Search Result 253, Processing Time 0.025 seconds

Experimental Verification of Aerosol Generation Mechanism for Cutting Fluid in Turning (선삭에서 절삭유 미립화 생성 메카니즘의 실험적 검증)

  • 고태조;오명석;박성호;김희술
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.93-99
    • /
    • 2002
  • The mechanism of the aerosol generation generally consists of spin-off, splash, and evaporation/condensation. Most researchers showed some theoretical model for predicting the particulate size and generation rate without real cutting in turning operation. These models were based on the spin-off mechanism, and verified good for modeling the process. However, in real machining, the cutting tool destroys the spin-off process, and the majority of the mist is due to splash. In this paper, we show some experimental evidence that the aerosol generation mechanism in real machining should be explained with splash model as well as spin-off.

Precision Hard Turning with Cryogenic Cooling (액화질소를 이용한 고정도 하드 터닝)

  • 박영우;김기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1048-1051
    • /
    • 2001
  • This paper presents an analytical and experimental study of a cryogenic machining for precision hard turning. A cryogenic circulation system is designed and mounted on the top of the tool insert. The machining process used is facing operation on a CNC turning center with dry and cryogenic conditions. The tool temperature and cutting forces are measured by the K-type thermocouple and by a three-component Kistler dynamometer, respectively. Both data are fed into the data acquisition program through an A/D card. Surface roughness and form accuracy of the machined surface are measured by WYKO NT2000. It is also found that surface roughness and form accuracy with cryogenic cooling are better than those with no coolant.

  • PDF

A Study on the Prediction Model of Surface Roughness by the Orthogonal Design for Turning Process (선반작업에서 직교계획법을 이용한 표면 거칠기 예측모델에 관한 연구)

  • 홍민성;염철만
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • This paper presents a study of surface roughness prediction model by orthogonal design in turning operation. Regression analysis technique has been used to study the effects of the cutting parameters such as cutting speed, feed depth of cut, and nose radius on surface roughness. An effect of interaction between two parameters on surface roughness has also been investigated. The experiment has been conducted using coated tungsten carbide inserts without cutting fluid. The reliability of the surface roughness model as a function of the cutting parameters has been estimated. The results show that the experimental design used in turning process is a method to estimate the effects of cutting parameters on sur-face roughness.

  • PDF

Application of Taguchi Method for the Selection of Chip Breaker (칩브레이크 선정을 위한 Taguchi 방법의 적용)

  • 전준용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.118-125
    • /
    • 1998
  • Chip control is a major problem in automatic machining process, especially in finish turning operation. In this case, chip breaker is one of the important factors to be determined. As unbroken chips are grown. these deteriorate the surface roughness. and proces automation can not be carried out. In this study to get rid of chip curling problem while turning internal hole. optimal chip breaker is selected from the experiment. The experiment is planned with Taguchi's method that is based on the orthogonal arrary of design factors. From the response table. cutting speed, feedrate, depth of cut and tool geometry turn to be major factors affecting chip formation. Then, optimal chip breaker is selected. and this is verified as good enough for chip control from the experiment.

  • PDF

Optimization of Surface Roughness of STS 304 in a Turning Process (STS304합금의 선삭가공에서 표면거칠기의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • The general manufacturing problem can be described as the achievement of a predefined product quality with given equipment, cost and time constraints. Unfortunately, for some quality characteristics of a product such as surface roughness it is hard to ensure that these requirements will be met. Stainless steels STS 304 is frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats. In this work, the dry turning parameters of STS 304 are optimized by using Taguchi method. The experiments were conducted at three different cutting speeds with three different feed and three different depth of cut. The cutting parameters are optimized using signal to noise ratio and the analysis of variance. The effects of cutting speed and feed on surface roughness was analyzed. The results revealed that the spindle speed is the more significant parameter influencing the surface roughness.

  • PDF

Mist Formation Characteristics in Turning (선삭 가공시의 미스트 발생 특성)

  • 오명석;고태조;박성호;김희술;정종운
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.147-152
    • /
    • 2002
  • The mechanism of the aerosol(mist) generation generally consists of spin-off, splash, and evaporation/condensation. Host researchers showed some theoretical model for predicting the particulate size and generation rate without real cutting in turning operation. These models were based on the spin-off mechanism, and verified good for modeling the process. However, in real machining, the cutting tool destroys the flow direction of the cutting fluid and generate the heat by the relative motion of between tool and workpicee, and so the mass loading of the mist is greatly increased as compared with non-cutting. In this paper, we show some experimental data that the mist formation characteristics of cutting is different from that of non-cutting.

  • PDF

Cutting Characteristics Comparison between CBN and Coated CBN Tools in Turning SCM440 (SCM440의 선삭가공시 CBN공구와 CBN코팅공구의 절삭특성 비교)

  • Bang, H.I.;Shin, H.G.;Oh, S.H.;Kim, T.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.31-37
    • /
    • 2011
  • The purpose of this study is to investigate cutting characteristics and wear behavior in SCM440 steel with different cutting tools, CBN(Cubic Boron Nitride) and coated CBN. During the test coated CBN tool especially with TiAlN showed better wear resistance behavior than orginal CBN tools. In the interrupted cutting condition, axial groove affected tool surface with impact force during the turning operation. For advantageous turning parameter in the interrupted process it is recommendable that lower speed. Also surface roughness showed better behavior in the coated CBN tool conditions than normal CBN conditions. Mainly this is caused by reduced friction between material and tool surface with coated layer.

Chatter control and tool condition monitoring of turning processes using sound pressure (음압을 이용한 선삭공정에서의 채터제어 및 공구 상태감시)

  • Lee, S.I.;Chung, S.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.50-57
    • /
    • 1997
  • In order to make unmanned machining systems with satisfactory performances, it is necessary to incorporate appropriate condition monitoring systems in the machining workstations to provide the required intelligence of the expert. This paper deals with condition monitoring for chatter, tool wear and breakage during turning operation. To develop economic sensing and identiffication methods for turning processes, sound pressure measurement and digital signal processing technique were proposed. We suppressed chatter by stability control methodology, which was studied through manipulation of spindle speeds regarding to chatter frequencies. It was shown that tool wear and fracture were identified and to be estimated by using the wear indices. The validity of the proposed system was confirmed through the large number of cutting tests.

  • PDF

A study on the turning ability of a DWT 8,000-ton oil/chemical tanker by real sea trials - A comparison between the semi-balanced rudder and the flap rudder - (실선시험에 의한 DWT 8,000톤 선박의 선회성능 - Semi-balanced rudder and flap rudder -)

  • Lee, Hyeong-Geun;An, Young-Su;Park, Byung-Soo;Jang, Choong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.245-256
    • /
    • 2015
  • This study is intended to provide navigator with specific information necessary to assist the avoidance of collision and the operation of ships to evaluate the maneuverability of dead weight tonnage 8,000 tons Oil/Chemical tanker. The actual maneuvering characteristics of ship can be adequately judged from the results of typical ship trials. Author carried out sea trials based full scale for turning test in ballast condition and full load condition, semi balanced rudder and flap rudder. The turning circle maneuvering were performed on the starboard and port sides with $35^{\circ}$ rudder angle at the normal continuous rating. The results from tests could be compared directly with the standards of maneuverability of IMO and consequently the maneuvering qualities of the ship is full satisfied with its.

A Study on the Stability of a Low Freeboard Coastwise Tanker Capsized in Turning (2) -Experimental Examination of the Outward Heel Moment Induced by Flooding of Seawater onto the Deck- (선회중 전복한 저건현 내항 탱커의 복원성에 관한 연구 (2) -갑판상 해수 침입이 경사 모멘트에 미치는 영향에 대한 실험적 조사 -)

  • Lee, Yun-Sok;Kim, Chol-Seong;Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.465-471
    • /
    • 2003
  • A coastwise chemical tanker sailing at full speed has capsized during turning in calm water. In the previous paper, we investigated the reasons of the accident by demonstrating the proper correction for the free surface effect of the liquid cargo and the bow-sinkage effect. In this paper, we also carry out model experiments of a transverse pressure under the seawater and an outward heel moment according to the heel angle and rudder angle, on the basis of radius of turning circle, ship's speed and drift angle of model ship occurring in turning. It is also shown that the flooding of seawater onto the deck occurring in turning generated a significant outward heel moment and increased the vertical distance between the center of gravity of the ship and the center of lateral water drag.