• Title/Summary/Keyword: turning operation

Search Result 255, Processing Time 0.024 seconds

Chip Breaking Prediction in Turning Process Considering Cutting Conditions and Chip Breaker Parameters (절삭조건과 칩브레이커 형상변수를 고려한 선삭 가공시의 칩절단 예측)

  • Choi, Jin-Pil;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.191-199
    • /
    • 1999
  • In the continuous cutting process such as turning operation, chip control is thought very important to achieve the unmanned manufacturing system. The prediction of chip breakage under the given conditions is a substantial element for chip control. In this paper, a systematic approach to know the chip breaking region is represented under the concept of equivalent parameters. to Verify the suggested model, cutting experiments are executed with a commercial type and two other type chip breakers which have modified chip breaker parameters such as land width, groove width and nose radius. predicted chip breaking regions using the 3D cutting model agrees with those obtained from the experiments.

  • PDF

Development of the Real-Time Simulator of a Turning-Type Sluice Gate Actuated by the Hydraulic Cylinder (유압실린더 구동식 전도 수문의 실시간 모의시험기 개발)

  • Lee, Seong-Rae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.192-198
    • /
    • 2006
  • The real-time simulator of a turning-type sluice gate actuated by the hydraulic cylinders is developed using a PC and a visual C++ program language. The real-time simulator receives the directional control valve signal selected by the operator using the mouse, updates the state variables of the turning-type sluice gate system responding to the control signal, and draws the moving figures of the sluice gate, cylinder, reserved water every drawing time on the PC monitor. Also, the operator can observe the sluice gate angle, cylinder force, cylinder pressures, and hydraulic power representing the operation of sluice gate system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the turning-type sluice gate system.

A Study on the effect of cutting parameters in face turning based on the Taguchi method (다구찌 방법에 기초한 단면절삭에서 절삭파라미터 영향에 관한 연구)

  • 장성민;조명우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.111-116
    • /
    • 2003
  • In this paper, object of experiment is to study on the effect of cutting parameters to obtain optimal surface toughness in face turning. Surface roughness is significantly important to be high quality of parts produced by turning process. For this purpose, the optimization of cutting parameters for fan Owning operation is investigated applying the Taguchi method. An orthogonal array, signal-to-noise ratio, and the analysis of variance are employed to evaluate effect of cutting parameters fir face turning. Also confirmation tests were performed to make a comparison between the results predicted from the mentioned correlations and the theoretical results. Cutting experiment is performed without cutting fluid using coated tungsten carbide inserts about workpieces of SM45C.

  • PDF

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.

A study on the In-Process Monitoring of Tool Wear via Ultrasonic Sensor (초음파 센서를 이용한 인프로세스 공구마멸 감시에 관한 연구)

  • Jeong, Eui-Sik;Hwang, Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.94-100
    • /
    • 2000
  • This paper presents a methodology for In-Process monitoring of tool wear by using ultrasonic sensor in turning operation. An integrated single ultrasonic transducer operation at a frequency of 10MHz is placed in contact with the insert tip. The change in amount of the reflected energy from the nose and flank of the tool can be related to the level of tool wear and the mechanical integrity of the tool. As the results, the tool wear monitoring system based on the ultrasonic pulse-echo method was proposed, it is useful to determine a tool life and tool change time.

  • PDF

A Study on Cutting Tool Selection Techniques for Rough and Finish Turning Operations (선삭가공에서 황삭 및 정삭용 절삭공구선정방법에 관한 연구)

  • 김인호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.236-242
    • /
    • 1998
  • This paper presents a development of computer aided cutting tool selection techniques for rough and finish turning operations. The developed system,. which is one of important activities for computer aided operation planning, firstly implements operation sequencing. Then, from relations of the size of machined area, recommended finishing allowance and maximum depth of cut, a main machining method is selected, a number of cut is calculated, cutting tools including toolholders and inserts are selected, and values for cutting parameters are determined. A cutting tool selection procedure is proposed for toolholders and inserts of ISO code in rough cutting, and some important parameters such as holder style, tool approach angle, tool function and its direction are described in detail. In order to demonstrate the validity of the system a case study is performed.

  • PDF

A Study on CAD interfaced CAPP System for Turning Operation ( I ) : Automatic Feature Recognition and Process Selection (선삭공정에서 CAD 인터페이스된 자동공정계획시스템개발에 관한 연구( I ) : 형상특징의 자동인식과 공정선정)

  • Cho, Kyu-Kap;Kim, In-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-16
    • /
    • 1991
  • This paper deals with some critical activities of CAPP system such as generation of part description database, part feature recognition, process and operation selection, and sequencing method for turning operation of symmetric rotational parts. The part description database is generated by data conversion module from CAD data, and the part feature is recognized by using both pattern primitives and feature recognition rules. Machining processes and operations are selected based on machining surface features and its sequence is determined by rules acquired from process planning expert. AutoCAD is employed as CAD system and computer program is developed by using Turbo-C on IBM PC/AT compatible system.

  • PDF

Improvement of Surface Integrity in Hard Turning With Sensitivity Analysis of Cutting Parameter

  • Kong, Jeong-Heung;Park, Man-Jin;Kim, Jin-Hyun;Jang, Dong-Young;Han, Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.321-322
    • /
    • 2002
  • This paper presents study of effects of cutting parameters such as cutting speed, feed rate and depth of cut on the surface roughness in hard turning. Taguchi Method and linear regression model of design parameters were utilized to identify the controlling process parameters that can monitor the surface roughness in the hard turning operation. In the process optimization, experimental planning was performed using the orthogonal array and concept of the signal-to-noise ratio. Cutting parameters such as speed, feed rate, and depth of cut were selected as process parameters and the ANOVA analysis showed that feed rate and cutting speed had more effect on the roughness variation that depth of cut.

  • PDF

Feed Optimization for High-Efficient Machining in Turning Process (선삭 공정에서의 고능률 가공을 위한 이송량의 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1338-1343
    • /
    • 2007
  • High-efficient machining, which means cutting a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on the cutting power regulation was proposed to realize the high-efficient machining in turning process. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

  • PDF