• 제목/요약/키워드: turning circle

검색결과 80건 처리시간 0.027초

Z시험에 의한 선회권의 작도법에 관한 연구 (A Study on the Method of Turning Circle Drawing by Z-test)

  • 오정철
    • 한국항해학회지
    • /
    • 제7권1호
    • /
    • pp.33-62
    • /
    • 1983
  • A navigator on bridge needs to know every kinds of motion characteristics of his vessel at sea. Generally when a vessel is completely built, the shipyard makes turning circle diagrams from the results of turing circle tests made during the sea trials for the reference of the vessel's owner. But referring only the data of a turning circle diagram, an officer on bridge can not figure out his vessel's maneuvering characteristics sufficiently, So nowadays the shipyard often adds Z test to turning circle test for more detail references. In this paper the author made Z and turning circle tests at the rudder angles of 15 and and 35 degress separately and in each of the case made a turrning circle diagram from the results of the turning circle test and the esults numerically calculated from mathematical formula made on the base of the maneuvering indices got from the Z test and compared them each other for the purpose of finding the correlations between them. Followings are concluded from the results. An actual turning circle diagram and a calculated one from the results of the Z test at same rudder angle coincides each other well when the center of the calculated circle is transferred by 1.7B toward the direction of the initial turning perpendicularly to the original course and 0.5L toward the direction in parallel with original course in case of the rudder angle of 35 degrees and 1.2B and 0.3L toward each of the above mentioned directions in case of rudder angle of 15 degrees.

  • PDF

선속이 선회권에 미치는 영향에 관한 연구 (The Effect of the Speed of a Ship on Her Turning Circle)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.209-214
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

  • PDF

선속이 선회권에 미치는 영향에 관한 연구 (The Effect of the Speed of a Ship on Her Turning Circle)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.210-210
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

DGPS에 의한 선미트롤선 해림 3호의 선회권측정 (Measurement for the Tuning Circle of the Stern Trawler HAELIM-3 by the Differential GPS)

  • 최재은;김진건;김기윤
    • 수산해양기술연구
    • /
    • 제31권1호
    • /
    • pp.84-92
    • /
    • 1995
  • 군산대학교 실습선 해림 3호의 조종성능을 파악하기 n이하여 GPS 보다 그 측립정도가 더 높은 DGPS를 이용하여 종회권 측정을 행하고, 이를 재래식 측정방법인 부표방입반법과 비교 검토하였으며, 그 결과를 요약하면 다음과 같다. 1. DGPS에 의한 선회권측정의 정도를 파악하기 위하여 육상에서 50m의 선회시험을 행한 결과 측위오차는 1.5m 이내 였다. 2. DGPS에 의한 선회권측정은 속력별, 타각별, 좌우선회별로 각각 그 특성이 잘 나타낼 수 있도록 정확하게 측정 할 수 있었다. 3. 부표방위반법에 의한 선회권측정은 타각을 크게 하여 그 선회권이 작을 때는 DGPS의 것과 같이 비교적 정확하게 측정할 수 있으나, 타각을 작게하여 선회권이 클 때는 방위오차가 크기 때문에 정확하게 측정할 수 없었다. 4. DGPS에 의한 해림 3호의 선회경(DT)은 타각 35。~5。일 때, 미속에서는 선박의 수선간장 (Lpp)상의 2.6~15.0배, 반속에서는 2.8~16.6배, 전속에서는 3.1~17.4배로 나타났었고, 부표방위반법에 의한 선회경은 각각 2.4~9.5배, 2.6~9.6배, 3.2~12.2배로 나타났었다

  • PDF

선박 TRIM변화에 따른 조종성능의 분석 (The Analysis of the Ship's Maneuverability According to the Ship's Trim and Draft)

  • 박병수;강동훈;강일권;김현무
    • 수산해양교육연구
    • /
    • 제27권6호
    • /
    • pp.1865-1871
    • /
    • 2015
  • Ship's trim is the one of the most important factor for safety at the sea. Turning circle test and Z-test were carried out to find the effect of ship's trim and draft changes. The results are as follows. 1. If the ship's draft and trim became large, turning circle would be wide. 2. If the ship's draft and trim became large, ship's drift angle would be small. Small drift angle made wide turning circle. 3. Trim by the head made slow ship's final speed when turning circle test. 4. By Z-test, the deeper draft and trim by the stern made small OSA. Small OSA means strong ship's stability. 5. Totally 2nd OSA is smaller than 1st OSA on Z-test. 6. There were small differences of 2nd OSA in trim by the stern, but there were large OSA in trim by the head. 7. The larger trim by the stern, the smaller OSW. The small OSW means better ship's stability and maneuverability.

VTS에서 AIS데이터를 활용한 정박선의 선회중심 추정에 관한 연구 (A Study on the Estimation of Center of Turning Circle of Anchoring Vessel using Automatic Identification System Data in VTS)

  • 김광일;정중식;박계각
    • 한국항해항만학회지
    • /
    • 제37권4호
    • /
    • pp.337-343
    • /
    • 2013
  • 정박중인 선박의 안전을 위하여 항해사, 선장 및 해상교통관제사는 항상 선박이 주묘되고 있는가를 확인하여야 한다. 정박선의 주묘판별을 위하여 VTS 관제사가 선회권과 그 중심을 인지하는 것이 중요하다. VTS에서 정박선 주묘여부 감시는 레이더 및 AIS를 이용할 수 있다. 또한 이용가능하다면, CCTV 영상이나 육안에 의한 관측도 이루어 질 수 있다. 그러나 VTS 시스템은 AIS 및 ARPA Radar로부터 수집된 데이터만으로 정박선을 모니터링하고 있으므로 정박지내에서 정박선의 선회중심을 알기가 어렵다. 본 연구에서는 VTS에서 AIS에 의해 수집된 정박 선박의 선수방위각과 위치데이터를 활용하여 선회중심을 추정하는 알고리즘을 제시하고자 한다. 알고리즘의 유효성을 확인하기 위해, 실 환경에서 정박한 선박에 대한 실험연구를 수행하였다.

선회권시험방법에 의한 신침로거리의 산정방법에 관한 연구 (The Method to Calculate the New Course Distance of a Ship by Turning Circle Test Method)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제30권4호
    • /
    • pp.299-311
    • /
    • 1994
  • The new course distances of a ship are one of the important factors of the safety handling as the indices to indicate directly her abilities of course alteration. Recently, International Maritime Organization (IMO) exhorts that all vessels should use maneuvering booklets in which are drawn the curves of new course distances obtained from the test of measuring them and noted other maneuvering performance standard in various navigation conditions. This paper describes the method to calculate many new course distances for many rudder angles by turning circle test without observation or using other calculating methods. The main results are as follows: 1) The mean difference of the distances between two new course distances by the turning circle test and heading test of the experimental ship was about 7.7% vaules of the ones by the heading test. when her altering angles were $48^{\circ}$, $63^{\circ}$and $70^{\circ}$, using the rudder angle of $35^{\circ}$ . These new course distances were therefore found to be small in difference of those. 2) The mean difference of the distance between two new course distances by the turning circle test and the maneuvering indices of the experimental ship was about 4.5% values of the ones by the maneuvering indices, when her altering angles were $48^{\circ}$, $63^{\circ}$and $70^{\circ}$, using the rudder angle of $35^{\circ}$, these new course distances were therefore found to be small in difference of those. 3) The mean difference of the distance between two new course distances by the turning circle test and the observation of the experimental ship was about 6.1% values of the ones by the observation, when her altering angles were $48^{\circ}$, $63^{\circ}$and $70^{\circ}$, using the rudder angle of $35^{\circ}$. These new course distances were therefore found to be small in difference of those. 4) It is confirmed that many new course distances for many angles can be calculated easily by using the method of ship's simple turning circle test, without observation or using the maneuvering indices and heading test method. 5) It is considered to be helpful for the safety of ship handling to draw curves of new course distances by turning circle test and $\phi_4$ - $\phi_2 by heading test, and utilize them at sea.

  • PDF

선박의 선회권 작성에 관한 고찰 (A Study on Developing Ship's Turing Circles)

  • 송강섭;허일
    • 한국항해학회지
    • /
    • 제3권1호
    • /
    • pp.1-17
    • /
    • 1979
  • It is very important for both naval architects and ship's officers to know the maneuvering characteristics of their ships. As the abilities of a rudder which controlls a ship can be determined clearly by analyzing the results of Kempf's zig-zag maneuver and directional stability of a ship also known by Dieudonn spiral maneuver, the importance of turning test which takes much time is recently apt to be neglected. But because the test can be executed comparatively more simply than any other maneuvering tests, it gives some informations on the directional stability, and turning characteristics may be expressed simply by the results of the test, it is still often performed. In this paper several assumptions are made to simplify the turning motion of a ship. The equations of initial transient phase, the radius ofsteady turning circle, and the center of the steady turning point are derived by using the hydrodynamic derivatives. And then the approximate method of drawing the turning circle geometrically is suggested.

  • PDF

타각과 선속에 따른 선회권의 변화-실습선 가야호- (Variation of the Turning Circle by the Rudder Angle and the Ship's Speed-Mainly on the Training Ship KAYA-)

  • 김민석;신현옥;강경미;김민선
    • 수산해양기술연구
    • /
    • 제41권2호
    • /
    • pp.156-164
    • /
    • 2005
  • The size of the ship's turning circle is influenced by various factors, such as block coefficient, underwater side shape, rudder area ratio, draft, trim and Froude's number. Most of them are already fixed on departure from a port. However, the ship's speed and the rudder angle are controllable factors which operations are able to change optionally during sailing. The DGPS measured the turning circles according to the ship's speed and the rudder angle. The maximum advances by slow and full ahead were 302m and 311m, and the maximum transfers were 460m and 452m, respectively. There occurs almost no difference in size of the turning circle by variation of the ship's speeds. When the rudder angles were changed to $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$, the maximum advances were 447m, 271m and 202m, and then also the maximum transfers 657m, 426m and 285m, respectively. The diameter of the tuning circle was decreased exponentially when the rudder angle was increased. The maneuverability was better when the direction of turning and propulsion of propeller are in the opposite direction rather than in the same one togetherm. The distance of the maximum transfer was always bigger than that of the maximum advance.

차량의 최소선회성능 시험의 실시간 계측 및 처리 장치 개발 (Development of Real-time Processing Measurement Device of the Vehicle Minimum Turning Circle Test)

  • 류치영;이정환;조진우;강이석
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.48-54
    • /
    • 2017
  • A minimum turning circle test of vehicles is operated by using Real-Time Kinematic(RTK) surveying method which enhances the precision of the Global Positioning System(GPS). A procedure of the conventional method to obtain results is to take post processing after the test. Therefore, it is difficult to ensure results in an instant. This paper introduces developed process and equipment that can immediately obtain results after the minimum turning test without post processing.