• Title/Summary/Keyword: turfgrass density

Search Result 155, Processing Time 0.027 seconds

Microbial Fertilizer Containing Lactobacillus fermentum Improved Creeping Bentgrass Density (유산균(Lactobacillus fermentum) 함유 미생물제제의 크리핑 벤트그래스 밀도개선 효과)

  • Jo, Gi-Woong;Kim, Young-Sun;Ham, Soun-Kyu;Bae, Eun-Ji;Lee, Jae-Pil;Kim, Doo-Hwan;Kim, Woo-Sung;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.322-332
    • /
    • 2017
  • Microbial fertilizer has been used to prompt turfgrass growth and quality and to prevent turfgrass diseases in turfgrass management of golf courses. This study was conducted to evaluate effects of microbial fertilizer containing Lactobacillus fermentum (MFcL) on changes of turfgrass quality and growth by investigating turf color index, chlorophyll index, clipping yield, and nutrient content in the turfgrass tissue. Treatments were designed as follows; non-fertilizer (NF), control fertilizer (CF), MFcL treatments [CF+$1.0g\;m^{-2}$(MFL), CF+$2.0g\;m^{-2}$ (2MFL)], and only MFcL treatment (OMF; $1.0g\;m^{-2}$ MFL). Chemical properties of soil by application of MFcL was unaffected. Turf color index, chlorophyll index, clipping yield and nutrient content and uptake of MFcL treatments were similar to CF. Furthermore, turfgrass shoot density of MFL was increased by 20% than that of CF, and that of OMF by 22% than NF. These results show that the application of microbial fertilizer containing L. fermentum increased turfgrass shoot density, which is not attributed to nutrient uptake in this study, but needs to be further investigated with other mechanisms such as biostimulant induction or phytohormone production.

Effect of Trinexapac-ethyl on the growth and changes of soil water content in bentgrass green (생장조절제 처리가 bentgrass 생육과 토양 수분이동에 미치는 영향)

  • 태현숙;고석구;안길만
    • Asian Journal of Turfgrass Science
    • /
    • v.14 no.1
    • /
    • pp.273-280
    • /
    • 2000
  • This study was conducted to evaluate an efficiency of plant growth regulator trinexapacethy(Primo) on the growth response of bentgrass and the change to soil water content in bentgrass green. Based on the results of the study, the following results were observed. 1. During four weeks after treatment, the visual color and turfgrass density of all the treated plots with trinexapac-ethyl(Primo) were more improved rather than without. Two treatments trinexapac-ethyl /$0.02mL\m^2$ and $0.04mL/\m^2$ were more favorable than other treatments. 2. It suggested that optimum rate to reduce the bentgrass growth and to increase the turfgrass density was the trinexapac-ethyl $0.04mL/\m^2$. 3. For six weeks after treatment, all treated plots were not significantly different (P<0.05) in turfgrass root length and root dry weitht. 4. In the treated plots with trinexapac-ethyl $0.04mL/\m^2$ for 25days in bentgrass green, soil water consumption was approximately 35% to 40% compare to the non-treated control.

  • PDF

Effect of Four Soil Amendments on Turfgrass Establishment and Density in Creeping Bentgrass Grown in Sand-based Root Zone (4종류 토양개량재가 USGA 모래에 파종한 크리핑 벤트그래스의 유묘 활착률 및 밀도 변화에 미치는 영향)

  • Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.7 no.2
    • /
    • pp.148-157
    • /
    • 2018
  • Research was initiated to evaluate four domestic and overseas organic soil amendments (SAs) on turfgrass groundcover and density and to provide basic information on practical sports turf establishment. This study was conducted in Agrostis palustris Huds. (CB) grown in sand-based root zone. A total of 20 treatments of SA+sand were prepared by mixing 10 to 50% (v/v). These amendments were SABP (Berger Peat), SAEP (Eco-Peat), SAGS (G1-Soil), and SAPP (Premier Peat). Turfgrass groundcover and density significantly varied with SAs, its mixing rate to sand and week after seeding (WAS). Cumulative turfgrass density was variable, but a great change occurred between 2 and 4 WAS. Turfgrass density at 2 WAS ranged from 36.7 (SABP 30) to 89.7% (SAGS 20), being 53.0% in differences among treatments. However, CB reached to carrying capacity around 6 WAS. Thus, most treatments were similar to 90% or so in density. At the end of study, overall groundcover ranged between 60.7 (SAEP 10) and 96.7% (SAPP 50). Proper mixing rate was variable with SAs, being 10 and 20% for SABP and SAGS, respectively. But the optimum rate was 50% for both SAEP and SAPP.

Turfgrass Establishment of USGA Putting Greens Related with Soil Physical Properties (USGA 공법으로 조성된 그린의 토앙물리성과 Bentgrass의 생육)

  • Kweon Dong-Young;Lee Jeong-Ho;Lee Dong-lk;Joo Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • USGA green specification is currently accepted in construction method of Korea. This study was carried out to find the factors influencing growth of turfgrass associated with soil physical properties of soil root-zone on golf green constructed with USGA method. Three putting greens in poor turfgrass and one in good turfgrass condition were selected for investigation on one golf course site at mid-South Korean peninsula. Soil hardness, moisture content, root length, and turf density were measured on-site greens, and soil physical properties and soil chemical properties also analyzed in laboratory. As a result of on-site surveys and soil physical tests in laboratory, soil physical properties were most important factors which influenced on turfgrass growth at tested greens. The results of soil particle analysis on green No. 2, in good turf condition, matched USGA sand particle recommendations. But those greens such as Nos. 1, 11 and 16, in poor putting greens, showed high soil compaction and improper soil particle distribution. Those factors created low leaf density, poor root depth, and higher moisture content compared with lower part of topsoil. Such phenomena caused inadequate turfgrass growth with soil hardening associated with poor drainage. Therefore, declines of soil physical properties associated with improper particle distribution caused a major factor influencing on turfgrass growth in golf green. Adequate test of soil particle analysis by USGA specification and proper construction method followed by adequate turf maintenance should be performed to obtain optimal turf quality on putting green.

A Detail Investigation of Major Diseases Occurrence and Pathogen Population on Turfgrass Cultivation in Nationwide (국내 잔디 재배지 주요 병해 발생 및 병원균 밀도 조사)

  • Min, Gyu Young;Lee, Jung Han;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • We investigated turfgrass diseases and inoculum density at nationwide turfgrass cultivation sites in year of 2013. Occurrences of large patch and rust disease appeared in September. Brown patch recorded in September to October at Namhea and Pythium blight disease occurred outbreaks in early July at Namhea site. Some sites in Namhea damaged 3% area of total cultivation field by Sclerotinia homoeocarp. In Daepyeong (Gyeongnam), Fairy ring and large patch were recorded. Severe takeall and fairy ring have been observed in Gochang-si. Multi-site in Cheongju-si, brown patch was observed in pandemic level. Interesting enough, a cool-season turfgrass cultivate sites in Pyeongtaek-si brown patch, leaf blast, summer patch, and Curvularia leaf spot were investigated during the surveys period. Inoculum densities (Rhizoctonia spp.) at turfgrass cultivations sites were increased as cumulatively in all survey sites. The investigation result indicated that the disease occurrence and pathogens are similar as diseases in golf courses.

Effect of Polymer, Calcium, Perlite and Chitosan in Organic Amendment on Growth in Kentucky Bluegrass (유기질개량재에서 폴리머, 칼슘, 펄라이트 및 키토산 성분이 켄터키 블루그래스의 생장에 미치는 효과)

  • Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.3 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • Research was initiated in greenhouse to investigate effects of polymer, calcium, perlite and chitosan on the growth of Kentucky bluegrass (KB). A total of 24 treatment combinations were used in the study. Treatments were made of water-swelling polymer (WSP), calcium, perlite, and chitosan in soil organic amendment (SOA). Significant differences were observed in germination rate, turfgrass coverage, turfgrass density and top growth among treatments. Germination rate, density and plant height varied with time after seeding. A proper mix of WSP is considered to be lower than 3% for turfgrass coverage and density. Regarding survival capability and top growth, however, it was good under 6%. Overall KB growth was more influenced by calcium and perlite than chitosan. Calcium and perlite were the most effective elements for early survival capacity and turfgrass density, respectively. But no effect was found by chitosan. Top growth increased with three elements, being perlite > calcium > chitosan. The chitosan was effective in early germination, but there was no effect on top growth until 3 weeks, when compared with others. A further study is needed for investigating the effect of these materials on the growth characteristics in mixtures of sand and SOA before a field application.

Analysis of Light Environment to Turfgrass Growth under the Roof Membrane on Stadium (경기장 지붕의 막구조가 잔디생육에 미치는 광환경에 대한 영향분석)

  • Joo Young Kyoo;Lee Dong Ik;Song Kyoo D.;Shim Gyu-Yul
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.3
    • /
    • pp.119-128
    • /
    • 2004
  • This study was conducted to analyze the effect of roof membrane on light environment that influence on turfgrass growth under domed stadium. Roof structure on experimental plot was constructed with PTFE and PE same as Busan Asiad Main Stadium. Tested turfgrass species were combinations of cool-season grasses(Kentucky Bluegrass, perennial ryegrass, $KBG80+PR20\%,\;KBG33+PR33+Fine fescue33\%)$ and warm-season grasses(zoysiagrass, 'An-yang middle-leaf, 'Zenith', Bermudagrass) established with seeding or sodding. The experimental set-up and research work were initiated November 1999 and finished on August 2000 at near Busan Asiad Main Stadium. By the result of computer simulation of daylight radiant energies on the turf surface were lower than needs of normal sport turf growth. The shortage of radiant resulted pest infection on cool-season grass mixture compared with warm-season. But turf color and density showed the best results on Kentucky bluegrass or its mixture plot. Over all the results showed that the best quality of turfgrass growth was occurred on full sun area, and the next was under PTFE membrane. The application of artificial lighting system may increase the turfgrass growth under domed stadium(partially) covered with roof membrane.

Comparison of Turfgrass Density, Uniformity and Tiller Characteristics in Mixtures of Overseeded Warm-Season and Cool-Season Grasses (덧파종한 난지형 및 한지형 혼합 식생 잔디밭에서 잔디밀도, 균일도 및 분얼경 특성 비교)

  • Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.67-76
    • /
    • 2017
  • The study was initiated to evaluate the effects of overseeding warm-season grass (Zoysia japonica Steud.) with cool-season grasses (CSG) on turfgrass density, uniformity and tiller appearance and to determine turfgrass species and seeding rate applicable for a practical use. Treatments were comprised of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), tall fescue (TF, Festuca arundinacea Schreb.) and their mixtures. Overall turfgrass density and uniformity were much better with the overseeded treatments over the control. In early stage after overseeding, the greater the PR in treatments, the greater the turfgrass density and uniformity. But the higher the KB, the lower the density and uniformity. From the middle-stage evaluation, however, we observed the opposite results as compared with early-stage findings. Accordingly, the KB was highest in turfgrass density and uniformity, while the PR lowest. In regards of mixtures, both turfgrass density and uniformity were better with increased KB and decreased PR in overseeding rates. As for a medium-quality mixtures of Korean lawngrass with CSG, it would be the best choice to apply with KB at $50g\;m^{-2}$ and equal combination of KB, PR and TF by 1/3 in mixing at $75g\;m^{-2}$ in terms of sustainable density and uniformity.

Growth and Quality Changes of Creeping Bentgrass by Application of Liquid Fertilizer Containing Silicate (규산 함유 액상비료 시비에 따른 크리핑 벤트그래스의 생육과 품질 변화)

  • Kim, Young-Sun;Lee, Chang-Eun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.5 no.3
    • /
    • pp.170-176
    • /
    • 2016
  • Superintendents have used a silicate fertilizer to improve a resistance of turfgrass against several diseases, drought damage and wear stress. This study was conducted to evaluate the effect of liquid fertilizer containing silicate (LFSi) on changes of turfgrass quality and growth by investigating visual quality, chlorophyll content-chlorophyll a, chlorophyll b, and total chlorophyll, root length, shoot length, dry weight of clipping, and nutrient content in leaves tissue. Treatments were designed as follows; control fertilizer (CF), SiF-1 (CF + $1ml\;m^{-2}$ LFSi), SiF-2 (CF + $2ml\;m^{-2}$ LFSi), and SiF-3 (CF + $4ml\;m^{-2}$ LFSi). As compared with CF, soil chemical properties, visual turfgrass quality, chlorophyll content, and dry weight of clipping of LFSi treatments were not significantly. Contrastingly, shoot density, root length, and the content of nitrogen or potassium were increased by application of LFSi. The content of Si in the tissue was positively correlated with potassium content or shoot length, and similarly shoot density positively with chlorophyll content or visual quality, respectively. These results suggested that the application of LFSi improved the turfgrass quality by increasing shoot density or K content in leaf tissue of creeping bentgrass.

White Grubs in Turfgrasses of Golf Courses and Their Seasonal Density (골프장 코스내 잔디 가해 굼벵이 종류와 계절별 밀도)

  • 추호렬;이동운;이상명;권태웅;성영탁;조팔용
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.3
    • /
    • pp.225-236
    • /
    • 1998
  • The white grubs in turfgrass were investigated from 15 golf clubs in 7 provinces and 2 metropolitan cities. 12 white grub species were collected and 11 species in 8 genera including oriental beetle, Anomala orientalis were identified but 1 species was not identified. The oriental beetle grub was the most serious pest in turfgrass out of them. The brown chafer, Adoretus tenuimaculatus was widely distributed species collected from 6 golf clubs, Maladera castanea was collected from 5 golf clubs and A. orientalis, Holotrichia kiotoensis, and M. orientalis were collected from 4 golf clubs. The white grubs, their density, and distribution depth were also observed at tee, fairway, and green from Yongweon, Daegu, and Dongrae golf clubs. A. orientalis was dominant species in overwintering season but A. tenuimaculatus was dominant one in unoverwintering season. The density of white grubs was low in the green compared with tee or fairway. Distribution depth was different depending on season in Daegu and Dongrae golf clubs but not different in Yongweon golf club. Although there showed no differences in white grub species depending on turfgrass but density was different, that is, A. tenuimaculatus was abundant in Zoysia matrella while A. orientalis abundant in Poa pratensis. The density of A. orientalis grubs was higher in older golf courses but there showed no differences in white grub species depending on the age of golf club.

  • PDF