• Title/Summary/Keyword: turbulent wind field

Search Result 103, Processing Time 0.026 seconds

Effect of flow bleed on shock wave/boundary layer interaction (유동의 흡입이 충격파/경계층의 간섭현상에 미치는 영향)

  • Kim, Heuy-Dong;Matsus, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1273-1283
    • /
    • 1997
  • Experiments of shock wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer flow bleed on the interaction flow field in a straight tube. Two-dimensional slits were installed on the tube walls to bleed the turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled within the range of 11 per cent. The wall pressures were measured by the flush mounted transducers and Schlieren optical observations were made for almost all of the experiments. The results show that the boundary layer flow bleed reduces the multiple shock waves to a strong normal shock wave. For the design Mach number of 1.6, it was found that the normal shock wave at the position of the silt was resulted from the main flow choking due to the suction of the boundary layer flow.

Stereoscopic PIV Measurement on Turbulent Flows in a Waterjet Intake Duct (스테레오 PIV를 이용한 워터젯 흡입덕트 내부의 난류유동측정)

  • Kwon, Seong-Hun;Yoon, Sang-Youl;Chun, Ho-Hwan;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.612-618
    • /
    • 2004
  • Stereoscopic PIV measurements were made in the wind tunnel with the actual size waterjet model. The main wind tunnel provides the vehicle velocity while the secondary wind tunnel adjusts the jet issuing velocity. Experiments were performed at the range of jet to vehicle velocity ratio (JVR), 3.75 to 8.0 and the Reynolds number of 220,000 based on the jet velocity and the hydraulic diameter of the waterjet intake duct. Wall pressure distributions were measured for various JVRs. Three dimensional velocity fields were obtained at the inlet and outlet of the intake duct. It is found that severe acceleration is occurred at the lip region while deceleration is noticeable at the ramp side. The detailed three dimensional velocity fields can be used as the accurate velocity input for the CFD simulation. It is interesting to note that there are many different types of vortices in the instantaneous velocity field. It can be considered that those vortices are generated by the corner of rectangular section of the intake and Gortler vortices due to the curved wall. However, typical secondary flow with a pair of counter rotating vortex pair is clearly seen in the ensemble averaged velocity field.

Spanwise coherent structure of wind turbulence and induced pressure on rectangular cylinders

  • Le, Thai-Hoa;Matsumoto, Masaru;Shirato, Hiromichi
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.441-455
    • /
    • 2009
  • Studying the spatial distribution in coherent fields such as turbulence and turbulence-induced force is important to model and evaluate turbulence-induced forces and response of structures in the turbulent flows. Turbulence field-based coherence function is commonly used for the spatial distribution characteristic of the turbulence-induced forces in the frequency domain so far. This paper will focus to study spectral coherent structure of the turbulence and induced forces in not only the frequency domain using conventional Fourier transform-based coherence, but also temporo-spectral coherence one in the time-frequency plane thanks to wavelet transform-based coherence for better understanding of the turbulence and force coherences and their spatial distributions. Effects of spanwise separations, bluff body flow, flow conditions and Karman vortex on coherent structures of the turbulence and induced pressure, comparison between turbulence and pressure coherences as well as intermittency of the coherent structure in the time-frequency plane will be investigated here. Some new findings are that not only the force coherence is higher than the turbulence coherence, the coherences of turbulence and forces depend on the spanwise separation as previous studies, but also the coherent structures of turbulence and forces relate to the ongoing turbulence flow and bluff body flow, moreover, intermittency in the time domain and low spectral band is considered as the nature of the coherent structure. Simultaneous measurements of the surface pressure and turbulence have been carried out on some typical rectangular cylinders with slenderness ratios B/D=1 (without and with splitter plate) and B/D=5 under the artificial turbulent flows in the wind tunnel.

Wind Flow over Hilly Terrain (언덕지형을 지나는 유동에 관한 연구)

  • 임희창;김현구;이정묵;경남호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.459-472
    • /
    • 1996
  • An experimental investigation on the wind flow over smooth bell-shaped two-dimensional hills with hill slopes (the ratio of height to half width) of 0.3 and 0.5 is performed in an atmospheric boundary-layer wind tunnel. Two categories of the models are used in the present investigation; six two-dimensional single-hills, and four continuous double-hills. The measurements of the flow field and surface static-pressure distribution are carried out over the Reynolds number (based on the hill height) of 1.9 $\times 10^4, 3.3 \times 10^4, and 5.6 \times 10^4$. The velocity profiles and turbulence characteristics are measured by the pitot-tube and X-type hot-wire anemometer, respectively. The undisturbed boundary-layer profile on the bottom surface of the wind tunnel is reasonably consistent with the power-law profile with $\alpha = 7.0 (1/\alpha$ is the power-law exponent) and shows good spanwise uniformities. The profiles of turbulent intensity are found to be consistent along the centerline of the wind tunnel. The measured non-dimensional speed-up profiles at the hill crest show good agreements with the predictions of Jackson and Hunt's linear theory. The flow separation occurs in the hill slope of 0.5, and the oil-ink dot method is used to find the reattachment points in the leeside of the hill. The measured reattachment points are compared with the numerical predictions. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the experimental results show good agreements.

  • PDF

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

Estimation of Design Wind Velocity Based on Short Term Measurements (단기 관측을 통한 설계풍속 추정)

  • Kwon, Soon-Duck;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.209-216
    • /
    • 2009
  • The structural stability as well as economical efficiency of the wind sensitive structures are strongly dependant on accurate evaluation of the design wind speed. Present study demonstrates a useful wind data obtained at the wind monitoring tower in the Kwangyang Suspension Bridge site. Moreover the Measure-Correlate-Predict (MCP) method has been applied to estimate the long-term wind data at the bridge site based on the wind data at the local weather station. The measured data indicate that the turbulent intensities and roughness exponents are strongly affected by the wind direction and surrounding topography. The new design wind speed based on MCP method is 20m/s lower than that at the original estimation, and the resulting design wind load is only 36% of the old prediction. The field measurement of wind data is recommended to ensure the economical and secure design of the wind sensitive structures because the measured wind data reveal much different from the estimated one due to local topography.

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (I) (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (1))

  • 김경천;정양범;김상기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.690-700
    • /
    • 1994
  • The effects of thermal stratification on the flow of a stratified fluid past a circular cylinder were examined in a wind tunnel. In order to produce strong thermal stratifications, a compact heat exchanger type variable electric heater is employed. Linear temperature gradient of up to $250^{\circ}C/m$ can be well sustained. The velocity and temperature profiles in the cylinder wake with a strong thermal gradient of $200^{\circ}C/m$ were measured and the smoke wire flow visualization method was used to investigate the wake characteristics. It is found that the temperature field effects as an active contaminant, so that the mean velocity and temperature profiles can not sustain their symmetricity about the wake centerline when such a strong thermal gradient is superimposed. It is evident that the turbulent mixing in the upper half section is stronger than that of the lower half of the wake in a stably stratified flow.

Study on Urban Temperature Prediction Method Using Lagrangian Particle Dispersion Model (라그랑지안 입자모델을 활용한 도시기온 예측기법의 연구)

  • Kim, Seogcheol;Yun, Jeongim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • A high resolution model is proposed for calculating the temperature field of a large city, based upon a Lagrangian particle model. Utilizing the analogy between the heat and mass transport phenomena in turbulent flows, a Lagrangian particle model, originally developed for air pollutant dispersion problems, is adapted for simulating heat transport. In the model conceptual heat particles are released into the atmosphere from the heat sources and move along with the turbulent winds in accordance with the Markov process. The potential temperature assumed to be conserved along with heat particles serves as a tag, so the temperature fields can be deduced from the distribution of particles. The wind fields are constructed from a diagnostic meteorology model incorporating a morphological model designed for building flows. Test run shows the robustness of the modeling system.

Diffusion of passive contaminant from a line source in a neutrally stratified turbulent boundary layer

  • Kurbatskii, Albert F.;Yakovenko, Sergey N.
    • Wind and Structures
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 2000
  • This paper presents results of modeling of the passive contaminant diffusion from a continuous line finite-size source located on the underlying surface of a neutral near-ground atmospheric layer obtained by using the non-local two-parameteric turbulence model and the transport equation of mean concentration. In the proposed diffusion model the turbulent diffusion coefficient changes not only with the vertical coordinate but also with the distance downstream from the source according to the experimental data. The results of the modeling reproduce structural features of the concentration field.

High-Fidelity Ship Airwake CFD Simulation Method Using Actual Large Ship Measurement and Wind Tunnel Test Results (대형 비행갑판을 갖는 함정과 풍동시험 결과를 활용한 고신뢰도 함정 Airwake 예측)

  • Jindeog Chung;Taehwan Cho;Sunghoon Lee;Jaehoon Choi;Hakmin Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Developing high-fidelity Computational Fluid Dynamics (CFD) simulation methods used to evaluate the airwake characteristics along a flight deck of a large ship, the various kind of data such as actual ship measurement and wind tunnel results are required to verify the accuracy of CFD simulation. Inflow velocity profile at the bow, local unsteady flow field data around the flight deck, and highly reliable wind tunnel data which were measured after reviewing Atmospheric Boundary Layer (ABL) simulation and Reynolds Number effects were also used to determine the key parameters such as turbulence model, time resolution and accuracy, grid resolution and type, inflow condition, domain size, simulation length, and so on in STAR CCM+. Velocity ratio and turbulent intensity difference between Full-scale CFD and actual ship measurement at the measurement points show less than 2% and 1.7% respectively. And differences in velocity ratio and turbulence intensity between wind tunnel test and small-scale CFD are both less than 2.2%. Based upon this fact, the selected parameters in CFD simulation are highly reliable for a specific wind condition.