• 제목/요약/키워드: turbulent vortices

검색결과 166건 처리시간 0.03초

Flush 흡입관 설계를 위한 매개변수 연구 (A Parametric Study for the Design of Flush inlet)

  • 이진규;정석영;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.132-138
    • /
    • 2004
  • Flush inlet, which has been chosen for modem air vehicles to take advantage of structure compactness and small RCS, gives rise to some aerodynamic problems such as flow separation and distortion due to vortices which deteriorate the performance of both inlet and engine. In this study, pressure recoveries at inlet exit plane were evaluated through numerical analyses of 3D turbulent flow for various inlet shapes and flight conditions. Inlet shape was controlled by changing ramp angle and width of throat, and effects of mass flow rate and angle of attack were investigated.

  • PDF

선형 터빈 케스케이드 통로에서의 3차원 유동 특성 (Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage)

  • 차봉준;이상우;이대성
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

케스케이드 날개 후단소음 특성에 관한 연구 (A Study on Trailing Edge Noise from a Blade Cascade in a Uniform Flow)

  • 손정민;김휘중;이승배;조성민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.652-657
    • /
    • 2002
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation and boundary layer on the blade. The design parameters such as solidity(c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the stagger angle upon the trailing edge noise for various trailing edge shapes. It is believed that the serrated trailing edge provides break-up mechanism for organized convecting vortices, thereby reduce the overall noise level.

  • PDF

비정상 $CH_4$/공기 제트 확산화염에 관한 수치모사 (Numerical Simulation of Unsteady $CH_4$/Air Jet Diffusion Flame)

  • 오창보;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.113-122
    • /
    • 2000
  • Dynamic structures of unsteady $CH_4$/Air jet diffusion flames with flame-vortex interaction were numerically investigated. A time-dependent, axisymmetric computational model was adopted for this calculation. Two step global reaction mechanism which considers 6 species, was used to calculate the reaction rates. The predicted results including gravitational effect show that the large outer vortices and the small inner vortex street can be well simulated without any additional disturbances in the downstream of nozzle tip. It was found that the temperature and species concentrations had various values for the same mixture fraction in flame-vortex interaction region. This unsteady jet flame configuration accompanying flame-vortex interaction is expected to give good implications for the structure of turbulent flames.

  • PDF

와동과 상호작용하는 화염편에서의 오염물질 생성특성 (Pollutant Formation Characteristics in a Flamelet Interacting with a Vortex)

  • 오창보;이의주
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.9-16
    • /
    • 2010
  • Flame structure of diffusion flame interacting with a single vortex was investigated with direct numerical simulation (DNS). A well-known counterflow diffusion flame was used as an initial flat flame and single vortices were made by issuing a high-velocity jet abruptly in fuel- and air-side. The variations in the maximum concentration of major species (CO and $CO_2$) and NOx (NO and $NO_2$) with the stoichiometric scalar dissipation rate were investigated. Unsteady effects in the species concentration variation of the flame interacting with a vortex were identified by comparing with that of steady flame. $NO_2$ formation characteristics of the flame interacting with a vortex were well understood by investigating the $HO_2$ formation. To enhance the prediction performance in the fire simulation, current turbulent combustion modelings are needed to be modified by adopting the unsteady effects in the species concentrations of diffusion flame interacting with a vortex.

인공심장내의 혈류유동의 컴퓨터 시뮬레이션 (Numerical Simulation of Flow in a Total Artificial Heart)

  • 김상현
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1992년도 춘계학술대회
    • /
    • pp.123-126
    • /
    • 1992
  • In this paper, a numerical simulation of steady laminar and turbulent flow in a two dimensional model for the total artificial heart is presented. A trileaflet polyurethane valve was simulated at the outflow orifice while the inflow orifice had a trileaflet or a flap valve. The numerical solutions of the simulated model show that regions of relative stasis and trapped vortices were smaller wi thin the ventricular chamber wi th the flap valve at the inflow orifice than that with the trileaflet valve. The predicted Reynolds stresses distal to the inflow valve within the ventricular chamber were also found to be smaller with the flap valve than with the trileaflet valve. Analysis of the numerical solutions suggests that geometries similar to the flap valve(or a tilting disc valve) results in a better flow dynamics within the total artificial heart chamber compared to a trileaflet valve.

  • PDF

익렬 날개 후단소음의 저감 (Trailing Edge Noise Modification in a Blade Cascade)

  • 손정민;김휘중;이승배;조성민
    • 한국유체기계학회 논문집
    • /
    • 제6권3호
    • /
    • pp.7-14
    • /
    • 2003
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer thickness on the blade. The design parameters such as solidity (c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the stagger angle upon the trailing edge noise for various trailing edge shapes. It is believed that the serrated trailing edge provides break-up mechanism for organized convecting vortices, thereby reduce the overall noise level for every case of stagger angle.

Computation of Turbulent Flows around Full-form Ships

  • Van Suak-Ho;Kim Hyoung-Tae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.118-125
    • /
    • 1995
  • This paper presents the result of a computational study on the wake characteristics of two tanker models. i.e HSVA and DYNE hull forms. The focus of the study is on the distributions of axial. radial and tangential velocities of the two hull forms in way of the propeller, especially over the propeller disk. The effect of bilge vortices on the velocity distribution is also concerned. For the computation of stern and wake flows of the two hull forms. the incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are numerically solved by the use of a second order finite difference method, which employs a four stage Runge-Kutta scheme with a residual averaging technique and the Baldwin-Lomax model. The calculated pressure distributions on the hull surface and the axial. radial and tangential velocity distributions over the propeller disk are presented for the two hull forms. Finally, the result of wake analysis for the computed wake distribution over the propeller disk is given in comparison with those for the experimental wake distribution for the both hull forms.

  • PDF

핵연료집합체에서의 대형이차와류 혼합날개의 열전달 특성에 관한 연구 (A Study of Beat Transfer Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle)

  • 안정수;최영돈
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.24-31
    • /
    • 2006
  • Mixing vanes have been installed in the space grid of nuclear fuel rod bundle to improve turbulent heat transfer. Split mixing vanes induce the vortex flow in the cooling water to swirl in sub-channel of fuel assembly. But, The swirling flow decays rapidly so that the heat transfer enhancing effect limited to short length after the mixing vane. In thi present study, the large scale vortex flow(LSVF) is generated by rearranging the mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid. The streamwise vorticity generated by LSVF sustain two times more than that split mixing vane. Heat transfer in the rod bundle occurs greatly at the same direction to cross flow, and maximum temperature at the surface of bundle drops about 1.5K

Field measurements of wind characteristics over hilly terrain within surface layer

  • He, Y.C.;Chan, P.W.;Li, Q.S.
    • Wind and Structures
    • /
    • 제19권5호
    • /
    • pp.541-563
    • /
    • 2014
  • This paper investigates the topographic effects on wind characteristics over hilly terrain, based on wind data recorded at a number of meteorological stations in or near complex terrain. The multiply data sources allow a more detailed investigation of the flow field than is normally possible. Vertical profiles of mean and turbulent wind components from a Sodar profiler were presented and then modeled as functions of height and wind speed. The correlations between longitudinal and vertical wind components were discussed. The phenomena of flow separation and generation of vortices were observed. The distance-dependence of the topographic effects on gust factors was revealed subsequently. Furthermore, the canyon effect was identified and discussed based on the observations of wind at a saddle point between two mountain peaks. This study aims to further understanding of the characteristics of surface wind over rugged terrain. The presented results are expected to be useful for structural design, prevention of pollutant dispersion, and validation of CFD (computational fluid dynamics) models or techniques over complex terrains.