• Title/Summary/Keyword: turbulent flame

Search Result 425, Processing Time 0.023 seconds

Effects of $CO_{2}$ Recirculation on Turbulent Jet Diffusion Flames with Pure Oxygen (이산화탄소 재순환이 순산소 난류제트 확산화염에 미치는 영향)

  • Cha, Min-Suk;Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.255-260
    • /
    • 2003
  • Characteristics of methane jet diffusion flames using pure oxygen with recirculating $CO_{2}$ as an oxidizer were investigated experimentally. A coflow burner was considered, and the diameter of confinement was larger than that of the coflow. No stabilized flame could be observed over 75% of $CO_{2}$ volume percent. A comparison between air and $O_{2}/CO_{2}$ mixture was made in terms of liftoff velocity, flame liftoff height, and blowout conditions. As results, more stable flame could be observed with $O_{2}/CO_{2}$ mixture for the case of having similar flame temperature.

  • PDF

Numerical Study of Metal Particle Behaviors and Flow Characteristics in Flame Spray Process (화염 스프레이 공정에서 미세 금속 입자의 거동 및 유동 특성에 대한 수치해석 연구)

  • Shin, Dong-Hwan;Lee, Jae-Bin;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • The present study conducted computational simulation for multiphase flow in the flame spray coating process with commercially available Ni-Cr powders. The flows in a flame spray gun is characterized by very complex phenomena including combustion, turbulent flows, and convective and radiative heat transfer. In this study, we used a commercial computational fluid dynamics (CFD) code of Fluent (ver. 6.3.26) to predict gas dynamics involving combustion, gas and particle temperature distributions, and multi-dimensional particle trajectories with the use of the discrete phase model (DPM). We also examined the effect of particle size on the flame spray process. It was found that particle velocity and gas temperature decreased rapidly in the radial direction, and they were substantially affected by the particle size.

Combustion Instability Analysis of LIMOUSINE Burner using LES-based Combustion Model and Helmholtz Equation (LES기반 연소모델과 Helmholtz 방정식을 이용한 LIMOUSINE 버너의 연소불안정 해석)

  • Shin, Youngjun;Jeon, Sangtae;Kim, Yongmo
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • This study has numerically investigated the flame-acoustics interactions in the turbulent partially premixed flame field. In the present approach, in order to analyze the combustion instability, the present approach has employed the LES-based combustion model as well as the Helmholtz solver. Computations are made for the validation case of the partially premixed LIMOUSINE burner. In terms of the FFT data, numerical results are compared with experimental data. Moreover, Helmholtz equation in frequency domain is solved by combining CFD field data including the flight time from a nozzle to the flame zone. Based on numerical results, the detailed discussions are made for the essential features of the combustion instability encountered in the partially premixed burner.

Effects of Oxidizer Inlet Velocity on NO Emission characteristics of 0.2MW Oxy-Fuel Combustor (산화제 입구 속도에 따른 0.2MW 순산소 연소기의 NO 배출 특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.63-68
    • /
    • 2006
  • Effects of oxidizer inlet velocity on NO emission characteristics of 0.2MW oxy-fuel combustor have been experimentally investigated. The NO formation process in the oxy-fuel combustion is extremely sensitive even for the small fraction of nitrogen in oxidizer. By increasing the oxidizer velocity, flame length is reduced due to the enhanced turbulent mixing. The increased oxidizer velocity also results in the decreased flame temperature through the elevated entrainment rate of the recirculated product and the corresponding NO emission is drastically decreased. Experimental results clearly indicate that the entrained product gases play a crucial role to decrease the temperature at the flame zone and the post flame zone where the thermal NO is mainly formed.

  • PDF

A Study on the Kernel Formation & Development for Lean Burn and EGR Engine (희박연소 및 EGR 엔진에서 초기 화염액 생성 및 성장에 관한 연구)

  • 송정훈;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.24-33
    • /
    • 1999
  • This paper investigate the effects of the variations of engine operation condition in the flame kernel formation and developmnet . A model for calculating the initial kernel development in spark ignition engines is formualted. It considered input of electrical energy, combustion energy release and heat transfer to the spark plyg, cylinder head, and unburned mixture. The model also takes into accounts strain rate of initial kernel and residual gas fraction. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy and turbulent flame expansion. Flame kernel development also influenced by engine operating conditions, for example, EGR rate, air-fuel ration and intake manifold pressure.

  • PDF

A Large-scale Structural Mixing Model applied to Blowout of Turbulent Nonpremixed Jet Flames in a Cross air-flow

  • Lee, Kee-Man;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.163-173
    • /
    • 1997
  • This article presents an application of a large-scale structural mixing model (Broadwell et al. 1984) to the blowout of turbulent reacting jets discharging perpendicularly into an unconfined cross air-flow. In an analysis of a common stability curve, a plausible explanation can be made that the phenomenon of blowout is related only to the mixing time scale of the two flows. The most notable observation is that the blowout distance is traced at fixed positions at all times according to the velocity ratio R. Measurements of the lower blowout limits in the liftable flame agree qualitatively with the blowout parameter ${\varepsilon}$, proposed by Broadwell et al. Good agreement between the results calculated by a modified blowout parameter ${\varepsilon}^'$ and experimental results confirms the important effect of a large-scale structure in specifying the stabilization feature of blowouts.

  • PDF

An Experimental Study on Liftoff and Reattachment Characteristics in Concentric Burner (프로판 동축류 확산 화염에서 화염 부상과 재부착에 관한 실험적 연구)

  • Park, S.H.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.119-124
    • /
    • 2001
  • Propane coflow diffusion flames have been experimentally studied to investigate the liftoff and reattachment characteristics. Flame properties such as velocity and density distribution were measured by LDV and shadowgraphy, respectively. It is shown that as the velocity of coflowing air increases, liftoff velocity decreases nonlinearly in turbulent jets and linearly in laminar jets, while reattachment velocity decreases nonlinearly. Meanwhile, as inner nozzle tip thickness increases, liftoff velocity increases with the reattachment velocity nearly unchanged. Liftoff phenomena in these flames can be categorized into three classes as a function of coflow velocity, such as laminar liftoff, turbulent liftoff, and transient liftoff.

  • PDF

A Study on Combustion Characteristics of Turbulent Spray Flame by the Dual Swirler (2중스월류에 의한 난류분무화염의 연소특성 연구)

  • Lee, Kang-Yeop;Hwang, Sang-Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.105-116
    • /
    • 2000
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swril flow(DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic(TSPD) as TEM were carried out. The NOx, $CO_2$,$O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

Numerical Analysis of Turbulent Combustion Flow in Scramjet Combustors (스크램제트 연소기 내의 난류 연소 유동 해석)

  • Choi, Jeong-Yeol;Won, Su-Hee;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.261-267
    • /
    • 2005
  • A comprehensive DES quality numerical analysis has been carried out for reacting flows in constant-area and divergent scramjet combustor configuration with and without a cavity. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel-air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the pervious studies. Much of the flow unsteadiness is related not only the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

Study on Instantaneous Structure of Turbulent Pulverized Coal Flame by Simultaneous Measurement (동시계측에 의한 난류 미분탄 화염의 순간구조에 관한 연구)

  • Hwang, Seung-min
    • Journal of Environmental Science International
    • /
    • v.27 no.5
    • /
    • pp.309-317
    • /
    • 2018
  • In this study, a laser sheet technique and PLIF (Planar laser-induced fluorescence) are applied to a laboratory-scale pulverized coal burner of the open type, and the spatial relationship of the pulverized coal particle zone and the combustion reaction zone is examined by simultaneous measurement of Mie scattering and OH-LIF images. It is found that this technique can be used to investigate the spatial relationship of the combustion reaction zone and pulverized-coal particles in turbulent pulverized-coal flames without disturbing the combustion reaction field. In the upstream region, the combustion reaction occurs only in the periphery of the clusters where high-temperature burned gas of the methane pilot flame is entrained and oxygen supply is sufficient. In the downstream region, however, combustion reaction can be seen also within clusters of pulverized-coal particles, since the temperature of pulverized-coal particles rises, and the mixing with emitted volatile matter and ambient air is promoted.