• 제목/요약/키워드: turbulent flame

검색결과 425건 처리시간 0.02초

난류 예혼합연소 화염의 LES 및 산업용 연소기 개발을 위한 LES 응용 해석 기술 (LES OF TURBULENT PREMIXED COMBUSTION FLAME AND LES APPLICATION FOR THE INDUSTRIAL COMBUSTOR DEVELOPMENT)

  • 박남석;류종력
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.437-441
    • /
    • 2010
  • LES results of turbulent premixed combustion flows are introduced by using the dynamic sub-grid scale model based on G-equation describing the flame front propagation. The turbulent premixed combustion flows around bluff body and over backward facing step are analyzed to validate present formation. LES of swirling partially premixed combustion flame is also performed to conform the predictive capabilities of LES model and to prompt our understanding for the combustion flows over double cone swirl burner combustor by using CFD-ACE+ commercial code.

  • PDF

CMC model에 의한 near-extinction methane/air turbulent jet diffusion flame의 수치적 모사 (Numerical Study on Methane/Air Turbulent Jet Diffusion Flames Near-Extinction Using Conditional Moment Closure Model)

  • 강승탁;김승현;허강일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.11-17
    • /
    • 2002
  • The first-order conditional moment closure (CMC) model is applied to $CH_4$/Air turbulent jet diffusion flames(Sandia Flame D, E and F). The flow and mixing fields are calculated by fast chemistry assumption and a beta function pdf for mixture fraction. Reacting scalar fields are calculated by elliptic CMC formulation. The results for Flame D show reasonable agreement with the measured conditional mean temperature and mass fractions of major species, although with discrepancy on the fuel rich side. The discrepancy tends to increase as the level of local extinction increases. Second-order CMC may be needed for better prediction of these near-extinction flames.

  • PDF

Damkohler 수가 비예혼합 CO/$H_2$/$N_2$ 난류 화염장에서의 초과평형농도 및 화염구조에 미치는 영향 (Effect of Damkohler Number on Superequilibrium Concentration and Flame Structure in Turbulent Nonpremixed Jet Flames)

  • 김군홍;김용모;윤명원
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.51-58
    • /
    • 2002
  • The RPV(Reaction Progress Variable) combustion model has been applied to numerically investigate the effects of Damkohler number on the superequilibrium concentration and flame structure in the nonpremixed turbulent flames. Computations are performed for the two turbulent jet flames of CO/H$_2$/N$_2$(40/30/30 volume percent) having the same jet Reynolds number of 16,700 but different nozzle diameters(4.58mm and 7.72mm). The detailed discussions have been made for the interaction between fluid dynamics and chemistry in the flame field.

Detailed Spectroscopic Measurements of Chemiluminescence from Turbulent Premixed Flames in a Dump Combustor

  • Santavicca, D.A.;Lee, Jong-Guen
    • 한국연소학회지
    • /
    • 제9권3호
    • /
    • pp.19-26
    • /
    • 2004
  • This paper presents results of experimental study of flame chemiluminescence from turbulent premixed flames in a dump combustor. A detailed spectroscopic measurement of chemiluminescence over the wavelength of 405-495 nm is made for various flow conditions. No effect of turbulence on the relationship between chemiluminescence and heat release is found, suggesting the overall chemiluminescence intensity collected be used as a measure of overall heat release for non-oscillating stable flame. The background-$CO_2^*$ subtracted $CH^*$ chemiluminescence is found to be more sensitive to the equivalence ratio and premixedness of fuel-air mixture than $CO_2^*$ chemiluminescence.

  • PDF

희박연소에서 발생하는 메탄의 농도 상호작용과 삼중화염에 대한 연구 (Concentration Interaction of Premixed and Triple-layer Flames in Lean Burn with Methane Fuel)

  • 오태균;정석호
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.171-178
    • /
    • 2006
  • The performance in the practical combustion system including reciprocating engines and gas turbine combustors is being much governed by turbulent reacting flow that is often analyzed by both a laminar flamelets concept and flame interaction. The characteristics of laminar flame interaction have been investigated numerically to provide basic understanding of wrinkled turbulent flames under concentration interaction resulting from inhomogeneity in fuel-air mixing, especially focused on the transition of flame characteristics such as diffusion flame, partially premixed diffusion flame, and triple-layer flame by the variation in the degree of premixedness. The extinction stretch rates to the premixedness have also been obtained in this paper. The boundary defining the regime of the existence of triple-layer flames as functions of both stretch rate and premixedness has been determined which agrees well with previously reported experiment measuring OH radical concentration peaks based on PLIF.

난류 비예혼합 평면화염의 유동과 연소 특성 (The Characteristics of the Flow and Combustion in a Turbulent Non-Premixed Flat Flame)

  • 곽지현;정용기;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.447-457
    • /
    • 2003
  • An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl number on the flow and combustion characteristics. First. stream lines and velocity distribution in the flow field were obtained using PIV method. In contrast with the axial flow without swirl, highly swirled air induced stream lines along the burner tile. and backward flow was caused by recirculation in the center zone of the flow field. In the combustion. the flame with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure by measuring OH and CH radicals intensity and by calculating Damkohler number(Da) and turbulence Reynolds number(Re$_{T}$) was examined. It appeared to be comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the burned gas decreased the flame temperature and emissions concentrations as NO and CO. Consequently, the stable flat flame with low NO concentration was achieved.d.

버너 출구의 형상변화에 따른 난류 예혼합 화염의 특성에 관한 LES 연구 (LES Studies on the Characteristics of Turbulent Premixed Flame with the Configurations of Burner Exit)

  • 황철홍;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.96-104
    • /
    • 2006
  • In the present paper, the effects of combustion instability on flow structure and flame dynamic with the configurations of burner exit in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. As a result of mean flow field, the change of divergent half angle(${\alpha}$) at burner exit results in variations in the size and shape of the central toroidal recirculation(CTRZ) as well as flame length by changing corner recirculation zone(CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than that of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is the most shortest, while that in the case of ${\alpha}=30^{\circ}$ is the longest by the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it is identified that the case of ${\alpha}=45^{\circ}$ shows the most largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, comparing with that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons are discussed in detail through the analysis of unsteady phenomena about recirculation zone and flame surface. Finally the effects of flame-acoustic interaction are evaluated using local Rayleigh parameter.

  • PDF

고온ㆍ고압 정적 연소기내 난류 프로판 예혼합 화염의 매연생성에 관한 연구 (A Study on Soot Formation of Turbulent Premixed Propane Flames in n Constant-Volume Combustor at High Temperatures and High Pressures)

  • 배명환
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.1-9
    • /
    • 2001
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effects of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The pressure and temperature during soot formation are changed by varying the initial charge pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping temperature and rising pressure at constant equivalence ratio, and that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

  • PDF

선회 예혼합연소기에서 당량비 변화에 따른 유동구조 및 화염특성에 관한 LES 연구 (LES Studies on Flow Structure and Flame Characteristic with Equivalence Ratios in a Swirling Premixed Combustor)

  • 황철홍;김세원;이창언
    • 한국연소학회지
    • /
    • 제11권4호
    • /
    • pp.27-35
    • /
    • 2006
  • The impacts of equivalence ratio on flow structure and flame dynamic in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

석탄가스 난류선회유동 예혼합부상화염의 안정성 해석 (Numerical Study on the Stabilization of Turbulent Swirling Lifted Premixed Syngas Flames)

  • 강성모;이정원;김용모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.349-352
    • /
    • 2008
  • This study has numerically modeled the combustion processes of the turbulent swirling premixed lifted syngas flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role of stabilizing the turbulent lifted flames. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Numerical results indicate clearly that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling premixed lifted flames in the low-swirl burner. Computations are made for the wide range of the syngas chemical composition and the dilution level at two pressure conditions (1.0, 5.0 bar). Numerical results indicate that the lifted height in the LSB is increased by decreasing the H2 percentage and increasing the dilution level at the given equivalence ratio. It is also found that the flashback is occurred for the hydrogen composition higher than 80% at the equivalence ratio, 0.8. However, at the syngas composition range in the IGCC system, the stable lean-premixed lifted flames are formed at the low-swirl burner.

  • PDF