• 제목/요약/키워드: turbulence modelling

검색결과 63건 처리시간 0.021초

압축기 익렬 유동해석을 위한 알고리즘과 난류 모델의 비교 연구 (Comparison of Algorithm & Turbulence Modelling for Calculation of Compressor Cascade Flows)

  • 김석훈;이기수;최정열;김귀순;임진식;김유일
    • 한국추진공학회지
    • /
    • 제4권4호
    • /
    • pp.59-69
    • /
    • 2000
  • 2차인 압축성/비압축성 Navier-Stokes 방정식은 이용하여 DCA 압푹기 익렬의 수치 해석을 수행하고 실험치와 비교 검토하였다. SIMPLE 알고리즘을 적용한 비압축성 코드는 대류항의 이산화에 하이브리드 도식을 진동해를 방지하기 위해 집중격자 기법을 사용하였다. 압축성 코드는 예조건화 기법 을 적용하였으며 공간 이산화출 위해 풍상 차분법을, 시간 적분을 위해서는 LU-SGS 기법을 사용하였다. 또한 난류 점성 유동장을 해석하기 위해 Baldwin-Lomax, standard $\kappa$ -$\varepsilon$, $\kappa$ -$\varepsilon$ Lam. Bremhorst, standard $\kappa$-$\omega$, $\kappa$ -$\omega$ SST 모델 등의 난류 모델을 적용하여 각 모델들의 특성을 살펴보았다.

  • PDF

Exploring the effects of speed and scale on a ship's form factor using CFD

  • Terziev, Momchil;Tezdogan, Tahsin;Demirel, Yigit Kemal;Villa, Diego;Mizzi, Simon;Incecik, Atilla
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.147-162
    • /
    • 2021
  • The problem of predicting a ship's form factor and associated scale effects has been subject to many investigations in recent years. In this study, an attempt is made to investigate whether the form factor is influenced by a change in the ship's speed by numerically modelling a geosim series of the KCS hull form by means of a RANS solver. The turbulence dependence of the problem is also studied by altering the closure model among three widely used approaches (the k-𝜔, k-𝜔 SST, and k-𝜀 models). The results show that at very low speeds (Froude numbers in the range of 0.02-0.06) the numerical model predicts changes in the form factor of a ship between 10% and 20%, depending on the turbulence model and scale factor choices. As the speed is increased further, the form factor exhibits little change, usually in the range of 1% or less. Simulations where the Reynolds number is changed by approximately two orders of magnitude, achieved by altering the value of viscosity, confirmed that the form factor can be considered Froude-dependent only for low speeds, predicting essentially identical values when high speed cases are considered.

Applied Koopmanistic interpretation of subcritical prism wake physics using the dynamic mode decomposition

  • Cruz Y. Li;Xisheng Lin;Gang Hu;Lei Zhou;Tim K.T. Tse;Yunfei Fu
    • Wind and Structures
    • /
    • 제37권3호
    • /
    • pp.191-209
    • /
    • 2023
  • This work investigates the subcritical free-shear prism wake at Re=22,000 by the Koopman analysis using the Dynamic Mode Decomposition (DMD) algorithm. The Koopman model linearized nonlinearities in the stochastic, homogeneous anisotropic turbulent wake, generating temporally orthogonal eigen tuples that carry meaningful, coherent structures. Phenomenological analysis of dominant modes revealed their physical interpretations: Mode 1 renders the mean-field dynamics, Modes 2 describes the roll-up of the Strouhal vortex, Mode 3 describes the Bloor-Gerrard vortex resulting from the Kelvin-Helmholtz instability inside shear layers, its superposition onto the Strouhal vortex, and the concurrent flow entrainment, Modes 6 and 10 describe the low-frequency shedding of turbulent separation bubbles (TSBs) and turbulence production, respectively, which contribute to the beating phenomenon in the lift time history and the flapping motion of shear layers, Modes 4, 5, 7, 8, and 9 are the relatively trivial harmonic excitations. This work demonstrates the Koopman analysis' ability to provide insights into free-shear flows. Its success in subcritical turbulence also serves as an excellent reference for applications in other nonlinear, stochastic systems.

Computational Investigation of Turbulent Swirling Flows in Gas Turbine Combustors

  • Benim, A.C.;Escudier, M.P.;Stopford, P.J.;Buchanan, E.;Syed, K.J.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2008
  • In the first part of the paper, Computational Fluid Dynamics analysis of the combusting flow within a high-swirl lean premixed gas turbine combustor and over the $1^{st}$ row nozzle guide vanes is presented. In this analysis, the focus of the investigation is the fluid dynamics at the combustor/turbine interface and its impact on the turbine. The predictions show the existence of a highly-rotating vortex core in the combustor, which is in strong interaction with the turbine nozzle guide vanes. This has been observed to be in agreement with the temperature indicated by thermal paint observations. The results suggest that swirling flow vortex core transition phenomena play a very important role in gas turbine combustors with modern lean-premixed dry low emissions technology. As the predictability of vortex core transition phenomena has not yet been investigated sufficiently, a fundamental validation study has been initiated, with the aim of validating the predictive capability of currently-available modelling procedures for turbulent swirling flows near the sub/supercritical vortex core transition. In the second part of the paper, results are presented which analyse such transitional turbulent swirling flows in two different laboratory water test rigs. It has been observed that turbulent swirling flows of interest are dominated by low-frequency transient motion of coherent structures, which cannot be adequately simulated within the framework of steady-state RANS turbulence modelling approaches. It has been found that useful results can be obtained only by modelling strategies which resolve the three-dimensional, transient motion of coherent structures, and do not assume a scalar turbulent viscosity at all scales. These models include RSM based URANS procedures as well as LES and DES approaches.

Large-scale quasi-steady modelling of a downburst outflow using a slot jet

  • Lin, W.E.;Savory, E.
    • Wind and Structures
    • /
    • 제9권6호
    • /
    • pp.419-440
    • /
    • 2006
  • This article synthesizes the literature on the meteorology, experimental simulation, and wind engineering ramifications of intense downburst outflows. A novel design of a large-scale test facility and experimental evidence of its validity are presented. A two-dimensional slot jet is used to simulate only the outflow region of a downburst. Profiles of mean velocity and turbulence quantities are acquired using hot-wire anemometry. Comparison with the literature provides empirical evidence that supports the current approach. A geometric analysis considers the validity of applying a two-dimensional approximation for downburst wind loading of structures. This analysis is applicable to power transmission lines in particular. The slot jet concept can be implemented in a large boundary layer wind tunnel to enable large-scale laboratory experiments of thunderstorm wind loads on structures.

전산모델에 의한 응축기내에서의 기체유동현상의 예측 (Prediction of Flow Pattern inside a Power Condenser by Computer Modelling)

  • 설광원;이상용
    • 대한설비공학회지:설비저널
    • /
    • 제17권3호
    • /
    • pp.238-248
    • /
    • 1988
  • The flow pattern inside the power condenser is generally known to be very complicated due to the phase change and turbulence effects as well as the effect of condenser geometry. In the present study, the flow pattern inside the power condenser was numerically simulated with a personal computer. The widely known CHAMPION 2/E/FIX(Concentration, Heat and Momentum Program Instruction Outfit, 2D/Elliptic/Fixed grid) computer code was modified for this purpose. The flow was asssumed to be two-dimensional and steady-state, and the tube bank was considered to be homogeneous porous medium. Simple turbulent diffusion coefficients based on the appropriate experiments were obtained for the computation. Through this analytical approach, the flow pattern could be predicted fairly well. The computational results also show that the location of the air vent plays an important key role in determining the efficiency of the condenser.

  • PDF

PARTICLE ACCELERATION AND NON-THERMAL EMISSION FROM GALAXY CLUSTERS

  • BRUNETTI GIANFRANCO
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.493-500
    • /
    • 2004
  • The existence and extent of non-thermal phenomena in galaxy clusters is now well established. A key question in our understanding of these phenomena is the origin of the relativistic electrons which may be constrained by the modelling of the fine radio properties of radio halos and of their statistics. In this paper we argue that present data favour a scenario in which the emitting electrons in the intracluster medium (ICM) are reaccelerated in situ on their way out. An overview of turbulent-particle acceleration models is given focussing on recent time-dependent calculations which include a full coupling between particles and MHD waves.

복잡지형에서의 대기순환모델에 관한 연구 (A Study on the Development of Air Pollution Model Applicable to the Complex Terrain)

  • 윤준용;이성철;홍민선
    • 한국전산유체공학회지
    • /
    • 제2권1호
    • /
    • pp.109-116
    • /
    • 1997
  • The objective of this paper is to develop a computational model for the prediction of the pollutant spread from a mass source over a complex terrain. The model comprises a two-dimensional, steady state flow model and a concentration model which employs the results of the computed flow field. The computational model is applied to predict the spread of pollutants for Sanbon city, and the two cases have been compard with the results of SF/sub 6/ trace experiments.

  • PDF

A numerical study of the turbulent fluctuating flow around a square cylinder for different inlet shear

  • Islam, A.K.M. Sadrul;Hasan, R.G.M.
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.15-24
    • /
    • 2002
  • This paper reports the numerical calculations of uniform turbulent shear flow around a square cylinder. The predictions are obtained by solving the two-dimensional unsteady Navier-Stokes equations in a finite volume technique. The turbulent fluctuations are simulated by the standard $k-{\varepsilon}$ model and one of its variant which takes care of the realizability constraint in order to suppress the excessive generation of turbulence in a stagnation condition. It has been found that the Strouhal number and the mean drag coefficient are almost unaffected by the shear parameter but the mean lift coefficient is increased. The present predictions are compared with available experimental data.

저레이놀즈수 2차 모멘트 난류 열유속모형 개발에 관한 연구 (A Low-Reynolds Number Second Moment Closure for Turbulent Heat Fluxes)

  • 신종근;최영돈;이건휘
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3196-3207
    • /
    • 1993
  • A second moment turbulent closure for the turbulent heat flux near a wall is developed by modification of model constants in pressure interaction term as the variables of the turbulent Reynolds number using the universal properties of turbulent heat flux near the wall. The present model shows that model constant for the wall reflection term in pressure interaction is most important in modelling of the near wall heat flux. Fully developed pipe flows with constant wall heat flux are tested to validate the proposed model. In most of calculation region, the predicted turbulent properties agree better with the experimetal data than the results from standard algebraic heat flux model which use the uniform model constants.