• 제목/요약/키워드: turbulence and fluid dynamics

검색결과 374건 처리시간 0.03초

세라믹 필터 집진기의 유동 해석 (Aanalyze the Fluid Inside the Ceramic Filtration Dust Collection System)

  • 장성철;최동순
    • 한국산업융합학회 논문집
    • /
    • 제20권1호
    • /
    • pp.67-73
    • /
    • 2017
  • This study aimed to analyze the fluid inside the ceramic filtration dust collection system which was assumed to be a stationary 3-dimensional turbulence. The fluid dynamics data necessary for performance curves were obtained based on the analysis results. The governing equations used to compute the velocity distribution and pressure inside the catalyst converter were expressed with continuity and momentum equations. Furthermore, the ${\kappa}-{\varepsilon}$ turbulence model, already validated by the industry(coal factory, high temperature dust collector) was used for the study. Of a total of three computational models employed, Model-1 served as the basis for CFD analysis which took measurements in increments of 70mm.

Computational evaluation of wind loads on buildings: a review

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • 제16권6호
    • /
    • pp.629-660
    • /
    • 2013
  • This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.

전산유체역학을 이용한 풍력터빈 축소효과 수치해석 (Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics)

  • 박영민;장병희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.269-272
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using computational fluid dynamics. For the numerical analysis of wind turbine. Three dimensional Navier-Stokes solver with various turbulence models was tested and realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with experiment and blind test data. Using the present method, numerical simulations for various size of wind tunnel model were carried out and characteristics were observed in detail. The power loss due to the interference between wind turbine and nacelle was also computed for relatively larger nacelle installation in wind tunnel test. The present results showed good correlations with experimental data and reasonable trends of scale effect of wind turbine.

  • PDF

A Numerical Investigation of Indoor Air Quality with CFD

  • Sin V. K;Sun H. I
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.207-208
    • /
    • 2003
  • Increasing interest in indoor air quality (IAQ) control has been found because of its serious effect on human health. To evaluate IAQ, thermal comfort in terms of temperature and velocity distributions of indoor air has to be analyzed in detail. Choice of location for installation of air-conditioner in a building will affect the performance of cooling effect and thermal comfort on the occupants, which in turn will affect the indoor air quality (IAQ) of the building. In this paper, we present a discussion on the proper location of the air-conditioner in order to obtain good thermal comfort for occupant of a typical bedroom in Macao. A set of carefully designed numerical experiments is run with the Computational Fluid Dynamics (CFD) software FLOVENT 3.2 [1]. Reynolds averaged Navier-Stokes equations are solved with finite volume technique and turbulence effects upon the mean flow characteristics is modeled with the k - & model. Assumption of steady state environment is made and only convective and conductive heat transfer from the occupant and air-conditioner are being concerned.

  • PDF

Three-Dimensional Numerical Simulation of Intrusive Density Currents

  • An, Sangdo
    • 한국환경과학회지
    • /
    • 제23권7호
    • /
    • pp.1223-1232
    • /
    • 2014
  • Density currents have been easily observed in environmental flows, for instance turbidity currents and pollutant plumes in the oceans and rivers. In this study, we explored the propagation dynamics of density currents using the FLOW-3D computational fluid dynamics code. The renormalization group (RNG) $k-{\varepsilon}$ scheme, a turbulence numerical technique, is employed in a Reynold-averaged Navier-Stokes framework (RANS). The numerical simulations focused on two different types of intrusive density flows: (1) propagating into a two-layer ambient fluid; (2) propagating into a linearly stratified fluid. In the study of intrusive density flows into a two-layer ambient fluid, intrusive speeds were compared with laboratory experiments and analytical solutions. The numerical model shows good quantitative agreement for predicting propagation speed of the density currents. We also numerically reproduced the effect of the ratio of current depth to the overall depth of fluid. The numerical model provided excellent agreement with the analytical values. It was also clearly demonstrated that RNG $k-{\varepsilon}$ scheme within RANS framework is able to accurately simulate the dynamics of density currents. Simulations intruding into a continuously stratified fluid with the various buoyancy frequencies are carried out. These simulations demonstrate that three different propagation patterns can be developed according to the value of $h_n/H$ : (1) underflows developed with $h_n/H=0$ ; (2) overflows developed when $h_n/H=1$ ; (3) intrusive interflow occurred with the condition of 0 < $h_n/H$ < 1.

Numerical simulation on fluid-structure interaction of wind around super-tall building at high reynolds number conditions

  • Huang, Shenghong;Li, Rong;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.197-212
    • /
    • 2013
  • With more and more high-rise building being constructed in recent decades, bluff body flow with high Reynolds number and large scale dimensions has become an important topic in theoretical researches and engineering applications. In view of mechanics, the key problems in such flow are high Reynolds number turbulence and fluid-solid interaction. Aiming at such problems, a parallel fluid-structure interaction method based on socket parallel architecture was established and combined with the methods and models of large eddy simulation developed by authors recently. The new method is validated by the full two-way FSI simulations of 1:375 CAARC building model with Re = 70000 and a full scale Taipei101 high-rise building with Re = 1e8, The results obtained show that the proposed method and models is potential to perform high-Reynolds number LES and high-efficiency two-way coupling between detailed fluid dynamics computing and solid structure dynamics computing so that the detailed wind induced responses for high-rise buildings can be resolved practically.

Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models

  • Nazari, Tooraj;Rabiee, Ataollah;Kazeminejad, Hossein
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.573-578
    • /
    • 2019
  • Anisotropic distribution of the turbulent kinetic energy and the near-field excitations are the main causes of the steady state Flow-Induced Vibration (FIV) which could lead to fretting wear damage in vertically arranged supported slender rods. In this article, a combined Computational Fluid Dynamics (CFD) and Computational Structural Mechanic (CSM) approach named two-way Fluid-Structure Interaction (FSI) is used to investigate the modal characteristics of a typical rod's vibration. Performance of an Unsteady Reynolds-Average Navier-Stokes (URANS) and Large Eddy Simulation (LES) turbulence models on asymmetric fluctuations of the flow field are investigated. Using the LES turbulence model, any large deformation damps into a weak oscillation which remains in the system. However, it is challenging to use LES in two-way FSI problems from fluid domain discretization point of view which is investigated in this article as the innovation. It is concluded that the near-wall meshes whiten the viscous sub-layer is of great importance to estimate the Root Mean Square (RMS) of FIV amplitude correctly as a significant fretting wear parameter otherwise it merely computes the frequency of FIV.

Numerical Analysis of Convective Heat and Mass Transfer around Human Body under Strong Wind

  • Li, Cong;Ito, Kazuhide
    • 국제초고층학회논문집
    • /
    • 제1권2호
    • /
    • pp.107-116
    • /
    • 2012
  • The overarching objective of this study is to predict the convective heat transfer around a human body under forced strong airflow conditions assuming a strong wind blowing through high-rise buildings or an air shower system in an enclosed space. In this study, computational fluid dynamics (CFD) analyses of the flow field and temperature distributions around a human body were carried out to estimate the convective heat transfer coefficient for a whole human body assuming adult male geometry under forced convective airflow conditions between 15 m/s and 25 m/s. A total of 45 CFD analyses were analyzed with boundary conditions that included differences in the air velocity, wind direction and turbulence intensity. In the case of approach air velocity $U_{in}=25m/s$ and turbulent intensity TI = 10%, average convective heat transfer coefficient was estimated at approximately $100W/m^2/K$ for the whole body, and strong dependence on air velocity and turbulence intensity was confirmed. Finally, the formula for the mean convective heat transfer coefficient as a function of approaching average velocity and turbulence intensity was approximated by using the concept of equivalent steady wind speed ($U_{eq}$).

LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험 (AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL)

  • 류경중;김동현;추헌호;심재박
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

균일류 하에서 작업하는 근로자의 노출농도 예측 (Prediction of Worker's Exposure in a Uniform Freestream)

  • 정유진;김환태;하현철;김태형
    • 한국산업보건학회지
    • /
    • 제10권2호
    • /
    • pp.140-149
    • /
    • 2000
  • In industrial field, there are several operations where a horizontal unidirectional airflow is used to control airborne contaminants. When a worker is immersed in a uniform freestream, a recirculating airflow can be created downstream of the worker by the phenomenon of boundary layer seperation. If the contaminant source and the breathing zone are within this near-wake region, high exposure may occur. The investigation for the effect of contaminant source location on worker exposure was performed by using CFD(Computational Fluid Dynamics). The airflow field was numerically calculated by assuming a steady flow and using the standard $k-{\varepsilon}$ turbulence model. As the results were compared with experimental data, the applicability of CFD was successfully verified. Subsequently, the breathing zone concentrations of the worker were predicted and compared with experimental data. The effects of contaminant density and turbulence intensity of freestream on worker exposure were evaluated.

  • PDF