• Title/Summary/Keyword: turbine failure

Search Result 220, Processing Time 0.024 seconds

A Study on Failure Rate Prediction of Aircraft Gas Turbine Engine Turbine Blade (항공기 가스터빈엔진 터빈블레이드의 고장률 예측에 관한 연구)

  • Kim, Chun-Yong;Choi, Se-Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.21-26
    • /
    • 2019
  • The purpose of this study is to suggest a method for the efficient preventive maintenance of aircraft gas turbine engine turbine blades. For this study, the types and characteristics of gas turbine engines and its turbine blades were studied, the turbine blade defect types that caused an In-Flight Shut Down(IFSD) were analyzed, the blade failure rate according to the blade life cycle was analyzed through the Weibull distribution, one of the statistical techniques. Through these research results, it is possible to supplement the problems of the life cycle management and maintenance method of the turbine blade, and to suggest the measures to strengthen the preventive maintenance of the turbine blade. In this analysis, when total cycle of turbine blade exceeds 18,000 cycles, the failure rate is over 98%, and then the special management measures are required.

A review of wind-turbine structural stability, failure and alleviation

  • Rehman, Shafiqur;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.511-524
    • /
    • 2020
  • Advancements in materialistic life styles and increasing awareness about adverse climatic changes and its negative effects on human life have been the driving force of finding new and clean sources of energy. Wind power has become technologically mature and commercially acceptable on global scale. However, fossil fuels have been the major sources of energy in most countries, renewable energy (particularly wind) is now booming worldwide. To cope with this wind energy technology, various related aspects have to be understood by the scientific, engineering, utility, and contracting communities. This study is an effort towards the understanding of the (i) wind turbine blade and tower structural stability issues, (ii) turbine blade and tower failures and remedial measures, (iii) weather and seismic effects on turbine blade and tower failures, (iv) gear box failures, and (v) turbine blade and tower failure analysis tools.

Failure Forecast Diagnosis of Small Wind Turbine using Acoustic Emission Sensor

  • Bouno Toshio;Yuji Toshifumi;Hamada Tsugio;Hideaki Toya
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.78-83
    • /
    • 2005
  • Currently in Japan, the use of the small wind turbine is an upward trend. There are already many well established small wind turbine generators in use and their various failures have been reported. The most commonly sighted failure is blade damage. Thus the research purpose was set to develop a simple failure diagnostic system, where an Acoustic Emission (AE) signal was produced from the failure part of a blade which was measured by AE sensor. The failure diagnostic technique was thoroughly examined. Concurrently, the damage part of the blade was imitated, the AE signal was measured, and a FFT(Fast Fourier Transform) analysis was carried out, and was compared with the output characteristic. When one sheet of a blade was damaged 40mm or more, the level was computed at which failure could be diagnosed.

Study on the damage of Bearings due to failure of Oil Supply System at turbine (터빈 베어링 윤활유 공급 중단에 의한 베어링 손상에 대한 고찰)

  • Koo, Jae-Raeyang;Lee, Woo-Kwang;Koo, Woo-Sik;Kim, Yeon-Hwan;Park, Kwang-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1258-1261
    • /
    • 2003
  • Oil supply system is one of the most important part of Turbine. Lubricating oil of bearings supplied by oil pump. Failure of Oil supply pump critical damaged parts of Turbine, especially bearings. In this paper we have discussed the serious damage of turbine bearings due to failure of Oil supply pump.

  • PDF

Analysis for Prevention of Spragging in the Turbine Bearings (Spragging 에 의한 터빈 베어링의 손상 및 방지 대책)

  • 하현천;양승헌
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.174-178
    • /
    • 1999
  • This paper describes an investigation on bearing failure due to spragging that has been continuously occurred in turbine hearings. The spragging is defined as the damage found on the leading edge of unloaded pads in the tilting pad journal bearing, In general, the damage mechanism by spragging is classified into fatifgue failure, The principle cause of spragging could be thought as the self-excited vibration by the absence of a stable static equilibrium position of upper pads with no preload. Because of serious consequences of system breakdowns due to bearing failures, determination ar the causes of failure and effective method for countermeasures are very important. This paper describes both the causes of spragging and countermeasures for prevention of such failure, which are taken place in the electric power plants.

  • PDF

A Determination and application of a future failure rate for LTAM strategies Development on Nuclear Turbines (원자력터빈의 LTAM 전략개발을 위한 미래고장률 결정 및 적용)

  • Shin, Hye-Young;Yun, Eun-Sub
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2845-2849
    • /
    • 2008
  • Long Term Asset Management(LTAM) means a plan developed by using LCM(Life Cycle Management) process for optimum life cycle management of significant plant assets at each plant across the fleet. As a part of development of LTAM Strategies on nuclear turbines, a method so as to determine the future failure rates for low pressure turbine facilities at a nuclear plant was studied and developed by using both plant specific and industry-wide performance data. INPO's EPIX data were analyzed and some failure rate evaluation values considering preventive maintenance practices were calculated by using EPRI's PM Basis software. As the result, failure rate functions applicable to a priori and a posteriori replacement of low pressure turbines at a nuclear plant were developed and utilized in an assessment of economics of LCM alternatives on the nuclear turbine facilities in the respects of 40-year and 60-year operation bases.

  • PDF

Investigation of the Contributions of Creep and Thermal Fatigue to Failure of a High-Intermediate Pressure Steam Turbine Casing

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2020
  • The contribution of damage mechanisms to failure of steam turbine casing made of Cr-Mo-V steel was investigated. Creep-fatigue interaction on the HP side corner of turbine casing was revealed as the root cause of the catastrophic failure performed by metallurgical analysis. The steady-state pressure and transient thermal stress were analyzed based on the actual operating condition of the thermal plant. Damage of creep-fatigue interaction to crack initiation was evaluated with multiaxial effects. The contribution ratio of creep and fatigue to the crack initiation was estimated to 3:1. Temporary geometrical correct action with repair weld was executed. For long-term operation, design improvement of casing equipment for creep resistance should be needed.

Stochastic FMECA Assessment for Optimal RCM of Combustion-Turbine Generating Unit (복합화력발전기의 신뢰도 기반 유지보수를 위한 확률론적 FMECA 평가)

  • Joo, Jae-Myung;Lee, Seung-Hyuk;Shin, Jun-Seok;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.254-259
    • /
    • 2007
  • PM(Preventive Maintenance) can avail the generating unit to reduce cost and gain more profit in a competitive supply-side power market. So, it is necessary to perform reliability analysis on the power systems in which reliability is essential. Thus, to schedule optimal PM planning based on reliability that is defined RCM(Reliability-Centered Maintenance), FMECA(Failure Mode Effects and Criticality Analysis) assessment is very important. Therefore, in this paper, the procedure of FMECA assessment for optimal RCM is proposed by probabilistic approach using real historical failure data of combustion-turbine generators in Korean power systems. The stochastic FMECA is performed based on the effects of probable failure modes of combustion-turbine generating unit.

Analysis of Wind-Turbine Blade Behavior Under Static Dual-Axis Loads (풍력 블레이드에서 정적 이축하중 부하에 따른 거동 분석)

  • Son, Byung-Jik;Huh, Yong-Hak;Kim, Dong-Jin;Kim, Jong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.297-304
    • /
    • 2012
  • For the assessment of the performance of a wind-turbine blade, a simulated loading test may be required. In this study, the blade behavior was investigated through numerical analysis using a dual-axis loading test, closely simulating the real operation conditions. The blade structure for the 100-kW-class wind-turbine system was modeled using the finite element (FE) program ANSYS. The failure criteria and buckling analysis under dual-axis loading were examined. The failure analysis, including fiber failure and inter-fiber failure, was performed with Puck's failure criterion. As the dual-axis load ratio increases, the relatively increased stress occurs at the trailing edge and skin surface 3300-3600 mm away from the root. Furthermore, it is revealed that increasing the dual-axis load ratio makes the location that is weakest against buckling move toward the root part. Thus, it is seen that the dual-axis load test may be an essential requirement for the verification of blade performance.

A Study on the Reliability Improvement of the Turbine Control Valve System in Nuclear and Thermal Power Plants (원자력/화력발전소의 터빈제어밸브시스템의 신뢰성 향상에 관한 연구)

  • Yang, Jong Dae;Yang, Seok Jo;Lee, Yong Bum
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.93-100
    • /
    • 2019
  • Nuclear and thermal power plants must provide the turbines with an appropriate degree of high temperature and high pressure steam, to produce the optimum electricity. Additionally, in the event of system and power system failure during electrical production, the steam is immediately disabled, to protect the turbines and generators rotating at high speed. The plant thus uses a special steam control valve system for turbine control, which is opened by force of the hydraulic servo actuator and closed by a large steel spring force. In this study, the causes of failure of the turbine control valve system, a key device of the power plants, were analyzed, and the causes of failure were improved relative to reliability of the equipment.