• Title/Summary/Keyword: turbine blade failure

Search Result 78, Processing Time 0.032 seconds

A Study on the Parallel Operation Strategy of Small Wind Turbine System for Battery Charging (배터리 충전을 위한 소형풍력 발전 시스템의 병렬 운전방안에 관한 연구)

  • Son, Yung-Deug;Ku, Hyun-Keun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.549-556
    • /
    • 2014
  • This study proposes a parallel operation strategy for small wind turbine systems. A small wind turbine system consists of blade, permanent magnet synchronous generator, three-phase diode rectifier, DC/DC buck converter, and the battery load. This configuration has reliability, simple control algorithm, high efficiency, and low cost. In spite of these advantages, the system stops when unexpected failures occur. Possible failures can be divided into mechanical and electrical parts. The proposed strategy focuses on the failure of electrical parts, which is verified by numerical analysis through equivalent circuit and acquired general formula of small wind power generation systems. Simulation and experimental results prove its efficiency and usefulness.

The Evaluation of the Stress Corrosion Cracking for Improvement of Reliability in Turbine Operation and Maintenance (터빈 운전 신뢰성 향상을 위한 응력부식균열 평가)

  • Kang, Yong-Ho;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.280-287
    • /
    • 2008
  • In case of low pressure steam turbine used in power plant, it was operated in wet steam and high stress condition. Therefore, it is possible that the corrosion damage of low pressure was induced by this condition. According to previous study, about 30% of total blade failure correspond to corrosion fatigue or SCC(stress corrosion cracking) in low pressure turbine. Especially, LSB(last stage bucket) of low pressure turbine has a higher hardness to prevent erosion damage due to water droplet however, generally this is more dangerous for SCC damage. Therefore, to improve reliability of turbine blade. various methods for SCC evaluation has been developed. In this study, the crack found in LSB during in-service inspection was evaluated using microstructure analysis and stress analysis. From the stress analysis, the optimum size of fillet to remove the crack was proposed. And also, the reliability was evaluated for modified LSB using GOODMAN diagram.

  • PDF

Effect of Fabrication Methods on Static Strength of Polymer Based Composites under the Low Temperature Range (적층 방법에 따른 복합재의 저온 영역 하에서 정적 강도 변화)

  • Eom, Su-Hyeon;Dutta, Piyush K.;Gwon, Sun-Cheol;Kim, Guk-Jin;Kim, Yun-Hae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.7-12
    • /
    • 2003
  • When the wind turbine is used in cold regions, the mechanical properties and dimension stability of the blade will be changed. The proposal of this paper is to test the durability of the blade for wind turbine. It is necessary to select the most comfortable materials and fabrication processes for more stable wind turbine blade in cold regions. To select the most comfortable materials and processes, the static strength has to know through the tensile static tests at the severe condition as cold regions. First, the tensile static specimens made by RIM (Resin injection molding) process & vacuum bagging process with reinforcement materials and resin. Tensile static tests were carried out on three laminate lay-ups (carbon prepreg, carbon fiber dry fabric and glass fiber dry fabric) at different test temperature($24^{\circ}$, $-30^{\circ}$), determining properties such as the mechanical strength, stiffness and strain to failure. At different test temperature, in order to test the tensile strengths of these specimens used the low temperature chamber. Next, the results of this test were compared with each other. Finally, the most comfortable materials and fabrication processes can select based on these results. The results show the changes in the static behavior of three laminate lay-ups at different test temperatures. At low temperatures, the static strengths are higher than the ones at room temperature.

  • PDF

A Lightweight Design of the Spar cap of Wind Turbine Blades with Carbon Fiber Composite and Ply Reduction Ratio (탄소섬유 복합재 및 두께 축소율을 이용한 풍력 블레이드 스파캡 경량화 설계)

  • Kim, Do-Won;Jeong, Gyu;Lim, Jae Hyuk;Lim, Jun-Woo;Yu, Byeong-Min;Lee, Kil-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.66-75
    • /
    • 2018
  • In this paper, a lightweight design of the spar cap of 2MW wind turbine blade was carried out using the ply reduction ratio (PRR) and CFRP with a trade-off study. The spar cap is one of the most critical factor in determining the mechanical performance of the blade. Tsai-Wu and Puck fracture theory were used to determine the fracture. As a result, the CFRP composite material could be lighter in terms of weight by about 30% than GFRP composite material under the same conditions. Based on the analytical results, we derive the optimal value of the laminate thickness of the composite material and present the structural performance improvement and the lightweight design result.

Evaluation of a Bond Strength of Thermal Barrier Coating for Gas Turbine Blade (가스터빈 블레이드 열차폐 코팅의 접착강도 평가)

  • Kim, Dae-Jin;Lee, Dong-Hoon;Kim, Hyung-Ick;Kim, Mun-Young;Yang, Sung-Ho;Park, Sang-Yoel;Koo, Jae-Mean;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.195-199
    • /
    • 2007
  • In this study, bond strength tests were performed for the thermal barrier coating applied to the 1st stage turbine blade. After the tests, the specimens were cut and the locations of failure were observed by using optical microscope. The influence of heat treatment on bond strength of a bond coating and the difference among the three types of bond coatings are treated.

  • PDF

A Stochastic Analysis in Steam Turbine Blade Steel Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 증기 터빈블레이드재의 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kang, Myung-Su;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2421-2428
    • /
    • 2002
  • In this study, the failure probability of the degraded LP turbine blade steel was performed using the Monte Carlo simulation to apply variation of applied stress and strength. For this purpose, applied stress under the service condition of steady state was obtained by theoretical stress analysis and the maximum Von-Mises stress was 219MPa. The fatigue strength under rotating-bending load was evaluated by the staircase method. Furthermore, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probabilistic distributions of tensile and fatigue strength were determined by the proposed analysis. The failure probability with various loading conditions was derived from the strength-stress interference model and the characteristic factor of safety was also estimated.

Stress Analysis of Fir-Tree Root in Turbine Rotor Using Photoelastic Technique (광탄성기법을 이용한 터빈로터 퍼-트리부의 응력해석)

  • Sin, Gwang-Bok;Gyeong, U-Min;Hong, Chang-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1784-1797
    • /
    • 1996
  • The disk/blade assembly of a turbine engine is made in the shape of a dovetail type or a fir-tree type. Since disk fillet regions or contact surfaces undergo high stress comcentration, fatigue cracks frequentrly occur in the disk/blade assembly. Therefore, it is necessary to analyze the stress distributions in the fir-tree type disk/balde assembly and predict the region of fatigue failure. The stress distributions of the disk/blade assembly were investigated by using the photoelastic method and the finite element method. Two dimensional photoelastic techniques were used to investigate the stress distributions of contact surfaces and fillet regions. TH stress distributions were obtained by the shear-difference method and were compared to the finite element results. It was found that maximum tensile stresses were higher in the fillet region thatn in the contact surfaces of the fir-tree models. The finite element results showed good agreement with the experimental results.

Analysis of Time Domain Active Sensing Data from CX-100 Wind Turbine Blade Fatigue Tests for Damage Assessment

  • Choi, Mijin;Jung, Hwee Kwon;Taylor, Stuart G.;Farinholt, Kevin M.;Lee, Jung-Ryul;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • This paper presents the results obtained using time-series-based methods for structural damage assessment. The methods are applied to a wind turbine blade structure subjected to fatigue loads. A 9 m CX-100 (carbon experimental 100 kW) blade is harmonically excited at its first natural frequency to introduce a failure mode. Consequently, a through-thickness fatigue crack is visually identified at 8.5 million cycles. The time domain data from the piezoelectric active-sensing techniques are measured during the fatigue loadings and used to detect incipient damage. The damage-sensitive features, such as the first four moments and a normality indicator, are extracted from the time domain data. Time series autoregressive models with exogenous inputs are also implemented. These features could efficiently detect a fatigue crack and are less sensitive to operational variations than the other methods.

Source Location on Full-Scale Wind Turbine Blade Using Acoustic Emission Energy Based Signal Mapping Method (음향방출 에너지 기반 신호 맵핑 기법을 이용한 실물 풍력 블레이드 손상 검출)

  • Han, Byeong-Hee;Yoon, Dong-Jin;Huh, Yong-Hak;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2013
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. In this study, the activities of AE signals generated from external artificial sources was evaluated and located by new developed signal mapping source location method and this test is conducted by 750 kW full-scale blade. And a new source location method was applied to assess the damage in the wind turbine blade during step-by-step static load test. In this static loading test, we have used a full scale blade of 100 kW in capacity. The results show that the acoustic emission activities give a good agreement with the stress distribution and damage location in the blade. Finally, the applicability of the new source location method was confirmed by comparison of the result of source location and experimental damage location.

Design Technique for Improving the Durability of Top Coating for Thermal Barrier of Gas Turbine (가스터빈의 열차폐용 탑코팅의 내구성 향상 설계기술)

  • Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Thermal barrier coating (TBC) is used to protect the substrate and extend the operating life of the gas turbine for a power plant and an aircraft. The major cause of failure of such a coating is the spallation of coating, and it results from the thermal stress between top coating and bond coating. To improve the durability of TBC system, the dense vertical cracked (DVC) coating method to insert vertical cracks is applied to a gas turbine blade. In this study, a criterion for the design of vertical crack in the DVC coating was presented using the finite element analysis.