• Title/Summary/Keyword: turbidity removal

Search Result 329, Processing Time 0.025 seconds

Comparative study on cleaning effects of air scouring and unidirectional flushing considering water flow direction of water pipes (상수도관의 물 흐름 방향을 고려한 공기주입 세척 및 단방향 플러싱 공법의 세척 효과 비교 연구)

  • Seo, Jeewon;Lee, Gyusang;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.353-366
    • /
    • 2019
  • This research proposes an optimal flushing operation technique in an effort to prevent secondary water pollutions and accidents in aged pipes, and to improve the cleaning effect of unidirectional flushing. Water flow directions were analyzed using EPANET 2.0, while flushing and air scouring experiments in forward and reverse directions were performed in the field. In 42 experiments, average residual chlorine concentration and turbidity were improved after cleaning compared to before cleaning. It was found that even when the same cleaning method was used, further improvement of cleaning effect was possible by applying air injection and reverse direction cleaning techniques. By means of one-way ANOVA(Analysis of variance), it was also possible to statistically verify the need of actively utilizing air injection and reverse direction cleaning. Based on correlation between turbidity and TSS, the total amount of suspended solids removal was estimated for 874 flushing operations and 194 air scouring operations. The result showed that air scouring used more discharge water than flushing by an average of $4.9m^3$ yet with larger amounts of suspended solids removal by an average of 145.9 g. The result of analysis on turbidity values from 887 flushing operations showed low cleaning effect of unidirectional flushing for the pipes with diameters over 300 mm. In addition, the turbidity values measured during cleaning showed an increasing tendency as pipe age increased. The methodology and results of this research are expected to contribute to the efficient maintenance and improvement of water quality in water distribution networks. Follow-up research involving the measurement of water quality at regular time intervals during cleaning would allow a more accurate comparison of discharge water quality characteristics and cleaning effects between different cleaning methods. To this end, it is considered necessary to develop a standardized manual that can be used in the field and to provide relevant trainings.

A Study on the Field Application of Intermittently Aerated Activated Sludge Process for Water Reuse System (간헐포기 활성슬러지 중수처리공정의 현장적용 연구)

  • Seo, In-Seok;Kim, Byung-Goon;Park, Seung-Kook;Kwon, Sun-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.513-521
    • /
    • 2000
  • Intermittently aerated activated sludge process was applied as a water reuse process of $70m^3/day$ for the upgrade of organic, nitrogen and phosphorus removal efficiency and clarifier performance. After application of the intermittently aeration, removal efficiency of BOD, SS, T-N and T-P were achieved 95%, 90%, 80% and 60%, respectively. Removal efficiencies in intermittently aerated process were considerably increased. comparing to those of continuously aerated activated sludge process. Also sludge rising problem in clarifier was improved. Average concentration of supplied reusing water were BOD 5 mg/L, turbidity 4 NTU and after chlorination, residual chlorine 0.4 mg/L, coliform 0 MPN/100mL. Intermittently aerated activated sludge process could be one of the best alternative process for the retrofit of conventional activated sludge process for the removal of nutrient in water reuse system.

  • PDF

Removal of Suspended Solids Using a Flexible Fiber Filter in a Recirculating Aquaculture System (유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거)

  • Choi, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • The suitability of a flexible fiber filter for removing suspended solid (SS) in a recirculating aquaculture system was evaluated. This study focused on variation in the performance with a change in filtering time, influent water quality, and filtering mode duration. The particle distribution diagram of the filter effluent showed that the number of particles bigger than $5-8{\mu}m$ decreased dramatically, and the removal efficiency exceeded 80%. Although the removal efficiencies of SS and chemical oxygen demand (COD) were dependent on the quality of the influent, the SS and COD concentrations of the effluent were not affected by the influent concentrations. This was despite the deterioration if water quality after feeding in the rearing tank. The performance of the filter was not affected by the filtering mode duration, feeding conditions, or filtering time. The SS concentration and turbidity of the recirculating-type rearing tank were 30% and 50% lower, respectively, than of the a non-recirculating-type rearing tank under the same operating conditions. The flexible fiber filter was applicable to a recirculating aquaculture system that uses plenty of seawater, based on its low filtering resistance $(2kg_f/cm^2)$, high flux $(330m^3/m^2/hr)$, and high fine particle removal efficiency (80%, $5-8{\mu}m$).

Comparison of physical cleaning applied to chemical backwashing of wastewater reuse membrane system (하수재이용 막여과 공정에서 약품 역세에서의 물리세정 영향 비교 평가)

  • Lee, Chang-Ha;Kim, Young-Hoon;Jeon, Min-Jung;Lee, Yong-Soo;Jang, Am;Kim Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.981-987
    • /
    • 2011
  • Biologically treated water contains a large quantity of organic matters and microorganisms which can cause various problems to membrane. The membrane fouling occurred by these reasons is hard to control by single physical cleaning. This study analyzes the efficiency of aeration with chemical backwashing and foulants removal during chemical backwashing. The cleaning efficiency improves when the chemical concentration is high and the contact time of chemical is long. Chemical backwashing with aeration shows exceptional cleaning efficiency which leads the physical cleaning is required during chemical backwashing since it forms flow inside the membrane submerged tank. From the foulants removal analysis, the particles such as turbidity and TOC removal rate increase when the aeration is applied. Dissolved matter of DOC and UV254 removal is dependent on higher chemical concentration. According to FTIR analysis, one of major foulants, the polysaccharide is controlled by the chemical backwashing with aeration condition.

A Study on the Removal Characteristics of Organic matter and Bacteria with the Use of Ozone (오존을 이용한 유기물 및 세균의 제거 특성에 관한 연구)

  • Lee, Kwan-Young;Park, Sang-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • The aim of this study is to measure the removal characteristics of organic matter and bacteria with the use of ozone to reduce the problems caused by bacteria and organic matter which appear in sea-water is summer season. When the total input of ozone was $1.4mg/{\ell}O_3$, the removal rate of bacteria and E-coli from sea-water proved to be 100%. With the same input of ozone, on the other hand, the removal rate of COD turned to be relatively low, 50%, which was to the fact that sea-water consists of salt matter which is a kind of COD matter. This result supports the idea that we can keep using ozone steadily in the future to remove organic matters and bacteria from sea-water because ozone destructs relatively less salt matter in sea-water. Also, the treatment effect rate of SS, turbidity and organic matters such as $NH_3$-N, $NO_3$-N etc, was very high. As a result, we assume that the treatment of organic matter in sea-water with ozone is very effective

  • PDF

Influence of Different Mixing Types on the Removal of Natural Organic Matter in Water Treatment (정수처리시 천연유기물질의 제거에 대한 급속혼화유형의 영향)

  • Kim, Hyun-Chul;Yu, Myong-Jin;Lee, Seock-Heon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.370-377
    • /
    • 2005
  • Dispersion of coagulant should be completed in a fraction of a second before the metal hydroxide precipitate has form. For the reason so-called pump diffusion flash mixing (PDFM) have been proposed, and PDFM is one of reasonable methods to quickly disperse the hydrolyzing metal salts. In this study, therefore, we attempt to understand the difference of removal characteristics of natural organic matter (NOM) between pump diffusion flash mixing (PDFM) and conventional rapid mixing (CRM) for coagulation in a water treatment system, and to enhance the removal of NOM through the improved mixing process. DOC and turbidity removal by PDFM higher than those by CRM, while SUVA value of water treated by PDFM was high as compared with that by CRM. Hydrophilic NOM was more effectively removed by PDFM than CRM, since charge neutralization effect increased by quick dispersion of coagulant. The DBP formation potentials due to NOM was effectively reduced by the improved mixing (i.e., PDFM) for coagulation and could be controlled through decrease in concentration of precursor rather than reduction of activity with disinfectant.

Effect of Membrane Fouling due to Micro-organism Growth on the Membrane Surface (막면 세균 증식에 의한 막오염에 관한 연구)

  • Kim, Hyung Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.36-41
    • /
    • 1999
  • High quality drinking water can be produced by membrane separation process. A major problem in the current system is a membrane fouling control. In order to investigate membrane fouling due to E.coll removal, lab scale experiment using MF and UF and semi pilot plant experiment using UV radiation or not was performed. AS a result, the possibility of membrane fouling control by repressing of micro-organism on the membrane surface was clearly verified. But it was not clearly verified in this experiment the combined effect with other factors such as Turbidity, organic and inorganic matters.

  • PDF

Treatment of Dredging Suspended Solids Using Chitosan Coagulant (Chitosan 응집제를 이용한 준설토 부유물질 처리)

  • Lee, Jun-Ho;Yang, Seung-Ho;Shin, Yiung-Kyewn;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.834-846
    • /
    • 2011
  • The objective of this study is to development of IDFIS system, that are consisted of hydrocyclone, rapid flocculation and inclined settler with chitosan coagulant. As the results of Jar test, a chitosan optimum dosage of 40 mg/L for river sediment, and 5 mg/L for tunnelling wastewater sediment, which these conditions leaves of residual turbidity of less than 5 NTU. Because of the effectiveness of chitosan in removing turbidity was independent on pH, the operation of IDFIS system would be simple. The synthesized turbidity was made with clay particles, river sediment, river suspended sediment, and tunnelling wastewater sediment. Results indicate that the mean overall removal efficiency of turbidity, SS, COD and TP were 98%, 99%, 85% and 95%, respectively. Chitosan is very efficient in removing turbidity in the entire turbidity range examined. IDFIS system would have possibility with compact design, because of the increase of floc size favours the floc settling speed and reduces the settling time.

Efficiency evaluation of MBR, A/O processes utilizing self-sufficient energy (에너지 자립형 MBR, A/O 공정의 효율 평가)

  • Lim, Setaek;Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.305-314
    • /
    • 2014
  • A pilot plant (Q=5 $m^3/d$) study was implemented for small and medium sized personal wastewater treatment plant effluent to evaluate MBR and A/O processes utilizing self-sufficient energy composed of wind and solar energy. The removal efficiencies of BOD, SS, turbidity and color were sufficient for legal water quality standards for gray water. However, those of nitrogen and phosphorus could not meet legal regulations which suggested that further removal of those contaminants were needed for reuse of the treated water. Self-sufficient energy rate was 100 % for the pilot plant due to excessive design capacity. In this research, wind and solar energy system was applied considering geological characteristics, which significantly improved energy self-sufficiency. Substantial improvement on energy self-sufficiency can be obtained by optimized investment and operation at a full scale wastewater treatment plant.

Pilot Study Analysis of Three Different Processes in Drinking Water Treatment

  • Kim, Dae-Ho;Lee, Byoung-Ho
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.237-242
    • /
    • 2011
  • In this study, three pilot-scale plants with the capacity 30 $m^3$/day were designed and set up to treat reservoir water for the production of drinking water. Three treatment processes were compared in the pilot testing: process 1 (coagulation- flocculation- sedimentationsand filtration- ozone- BAC); process 2 (coagulation- flocculation- sedimentation- microfiltration-ozone- BAC); and process 3 (coagulation- flocculation- sedimentation- sand filtration- GAC). The quality of water has been evaluated on the basis of selected parameters such as turbidity, color, consumption of $KMnO_4$, dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), geosmin and 2-MIB. A detailed assessment of performance was carried out during a five months operation. Process 2 was found to have better removal efficiency of DOC, THMFP, geosmin and 2-MIB than process 1 and process 3 under identical conditions, although the removal rate of color was found to be the same in the three cases.