The development of shield-driven cross-river tunnels in China is witnessing a notable shift towards larger diameters, longer distances, and higher water pressures due to the more complex excavation environment. Complex geological formations, such as fault and karst cavities, pose significant construction risks. Real-time adjustment of shield tunneling parameters based on parameter prediction is the key to ensuring the safety and efficiency of shield tunneling. In this study, prediction models for the torque and thrust of the cutter plate of ultra-large diameter slurry shield TBMs is established based on integrated learning algorithms, by analyzing the real data of Heyan Road cross-river tunnel. The influence of geological complexities at the excavation face, substantial burial depth, and high water level on the slurry shield tunneling parameters are considered in the models. The results reveal that the predictive models established by applying Random Forest and AdaBoost algorithms exhibit strong agreement with actual data, which indicates that the good adaptability and predictive accuracy of these two models. The models proposed in this study can be applied in the real-time prediction and adaptive adjustment of the tunneling parameters for shield tunneling under complex geological conditions.
Lei She;Yan-long Li;Chao Wang;She-rong Zhang;Sun-wen He;Wen-jie Liu;Min Du;Shi-min Li
Geomechanics and Engineering
/
v.35
no.6
/
pp.647-663
/
2023
The investigation of the disc cutter wear prediction has an important guiding role in TBM equipment selection, project planning, and cost forecasting, especially when tunneling in a long-distance rock formations with high strength and high abrasivity. In this study, a comprehensive database of disc cutter wear data, geological properties, and tunneling parameters is obtained from a 1326 m excavated metro tunnel project in leptynite in Shenzhen, China. The failure forms and wear consumption of disc cutters on site are analyzed with emphasis. The results showed that 81% of disc cutters fail due to uniform wear, and other cutters are replaced owing to abnormal wear, especially flat wear of the cutter rings. In addition, it is found that there is a reasonable direct proportional relationship between the uniform wear rate (WR) and the installation radius (R), and the coefficient depends on geological characteristics and tunneling parameters. Thus, a preliminary prediction formula of the uniform wear rate, based on the installation radius of the cutterhead, was established. The correlation between some important geological properties (KV and UCS) along with some tunneling parameters (Fn and p) and wear rate was discussed using regression analysis methods, and several prediction models for uniform wear rate were developed. Compared with a single variable, the multivariable model shows better prediction ability, and 89% of WR can be accurately estimated. The prediction model has reliability and provides a practical tool for wear prediction of disc cutter under similar hard rock projects with similar geological conditions.
Previous studies for soil movements induced by tunneling have primarily focused on the free soil displacements. However, the stiffness of existing structures is expected to alter tunneling-induced ground movements, the sheltering influences for underground structures should be included. Furthermore, minimal attention has been given to the settings for the shield machine's operation parameters during the process of tunnels crossing above and below existing tunnels. Based on the Shanghai railway project, the soil movements induced by an earth pressure balance (EPB) shield considering the sheltering effects of existing tunnels are presented by the simplified theoretical method, the three-dimensional finite element (3D FE) simulation method, and the in-situ monitoring method. The deformation prediction of existing tunnels during complex traversing process is also presented. In addition, the deformation controlling safety measurements are carried out simultaneously to obtain the settings for the shield propulsion parameters, including earth pressure for cutting open, synchronized grouting, propulsion speed, and cutter head torque. It appears that the sheltering effects of underground structures have a great influence on ground movements caused by tunneling. The error obtained by the previous simplified methods based on the free soil displacements cannot be dismissed when encountering many existing structures.
Proceedings of the Korean Geotechical Society Conference
/
2005.03a
/
pp.1324-1334
/
2005
This study investigated the applicability of the Artificial Neural Network (ANN) technique for prediction of tunnel behavior. For training data collection, a series of finite element analyses were conducted for actual tunnel project site. Using the data, optimimzed ANNs were developed through a sensitivity study on internal parameters. The developed ANNs can make tunneling related predictions such as tunnel crown settlement, shotcrete lining stress, ground surface settlement, and groundwater inflow rate. The results indicated that the developed ANNs can be used as an effective and efficient tool for tunnelling related prediction in practical tunneling situations.
This study investigated the applicability of the Artificial Neural Network(ANN) technique for prediction of tunnel behavior. For training data collection, a series of finite element analyses were conducted for actual tunnel project site. Using the data, optimimzed ANNs were developed through a sensitivity study on internal parameters. The developed ANNs can make tunneling related predictions such as tunnel crown settlement, shotcrete lining stress, ground surface settlement, and groundwater inflow rate. The results indicated that the developed ANNs can be used as an effective and efficient tool for tunnelling related prediction in practical tunneling situations.
Mirzaeiabdolyousefi, Majid;Mahmoodzadeh, Arsalan;Ibrahim, Hawkar Hashim;Rashidi, Shima;Majeed, Mohammed Kamal;Mohammed, Adil Hussein
Geomechanics and Engineering
/
v.30
no.1
/
pp.11-26
/
2022
One of the most important issues in tunneling, is the squeezing phenomenon. Squeezing can occur during excavation or after the construction of tunnels, which in both cases could lead to significant damages. Therefore, it is important to predict the squeezing and consider it in the early design stage of tunnel construction. Different empirical, semi-empirical and theoretical-analytical methods have been presented to determine the squeezing. Therefore, it is necessary to examine the ability of each of these methods and identify the best method among them. In this study, squeezing in a part of the Alborz service tunnel in Iran was estimated through a number of empirical, semi- empirical and theoretical-analytical methods. Among these methods, the most robust model was used to obtain a database including 300 data for training and 33 data for testing in order to develop a machine learning (ML) method. To this end, three ML models of Gaussian process regression (GPR), artificial neural network (ANN) and support vector regression (SVR) were trained and tested to propose a robust model to predict the squeezing phenomenon. A comparative analysis between the conventional and the ML methods utilized in this study showed that, the GPR model is the most robust model in the prediction of squeezing phenomenon. The sensitivity analysis of the input parameters using the mutual information test (MIT) method showed that, the most sensitive parameter on the squeezing phenomenon is the tangential strain (ε_θ^α) parameter with a sensitivity score of 2.18. Finally, the GPR model was recommended to predict the squeezing phenomenon in tunneling projects. This work's significance is that it can provide a good estimation of the squeezing phenomenon in tunneling projects, based on which geotechnical engineers can take the necessary actions to deal with it in the pre-construction designs.
Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.
Byeonghyun Hwang;Hangseok Choi;Kibeom Kwon;Young Jin Shin;Minkyu Kang
Geomechanics and Engineering
/
v.38
no.5
/
pp.507-515
/
2024
An accurate estimation of the geotechnical parameters in front of tunnel faces is crucial for the safe construction of underground infrastructure using tunnel boring machines (TBMs). This study was aimed at developing a data-driven model for predicting the rock quality designation (RQD) of the ground formation ahead of tunnel faces. The dataset used for the machine learning (ML) model comprises seven geological and mechanical features and 564 RQD values, obtained from an earth pressure balance (EPB) shield TBM tunneling project beneath the Han River in the Republic of Korea. Four ML algorithms were employed in developing the RQD prediction model: k-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB). The grid search and five-fold cross-validation techniques were applied to optimize the prediction performance of the developed model by identifying the optimal hyperparameter combinations. The prediction results revealed that the RF algorithm-based model exhibited superior performance, achieving a root mean square error of 7.38% and coefficient of determination of 0.81. In addition, the Shapley additive explanations (SHAP) approach was adopted to determine the most relevant features, thereby enhancing the interpretability and reliability of the developed model with the RF algorithm. It was concluded that the developed model can successfully predict the RQD of the ground formation ahead of tunnel faces, contributing to safe and efficient tunnel excavation.
Proceedings of the Korean Society for Rock Mechanics Conference
/
2008.10a
/
pp.43-51
/
2008
Currently an increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method (NATM). For rational management of tunnels from planning to construction and maintenance stages, prediction, control and monitoring of displacements of and around the tunnel have to be performed with high accuracy. Computational method tools, such as finite element method, have been and are indispensable tool for tunnel engineers for many years. It is, however, a commonly acknowledged fact that determination of input parameters, especially material properties exhibiting nonlinear stress-strain relationship, is not an easy task even for an experienced engineer. Use and application of the acquired tunnel information is important for prediction accuracy and improvement of tunnel behavior on construction. Artificial Neural Network (ANN) model is a form of artificial intelligence that attempts to mimic behavior of human brain and nervous system. The main objective of this paper is to perform the deformation analysis in NATM tunnel by means of numerical simulation and artificial neural network (ANN) with field database. Developed ANN model can achieve a high level of prediction accuracy.
This research studies the effect of geotechnical factors on EPB-TBM performance parameters. The modeling was performed using simple and multivariate linear regression methods, artificial neural networks (ANNs), and Sugeno fuzzy logic (SFL) algorithm. In ANN, 80% of the data were randomly allocated to training and 20% to network testing. Meanwhile, in the SFL algorithm, 75% of the data were used for training and 25% for testing. The coefficient of determination (R2) obtained between the observed and estimated values in this model for the thrust force and cutterhead torque was 0.19 and 0.52, respectively. The results showed that the SFL outperformed the other models in predicting the target parameters. In this method, the R2 obtained between observed and predicted values for thrust force and cutterhead torque is 0.73 and 0.63, respectively. The sensitivity analysis results show that the internal friction angle (φ) and standard penetration number (SPT) have the greatest impact on thrust force. Also, earth pressure and overburden thickness have the highest effect on cutterhead torque.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.