• 제목/요약/키워드: tunnel stiffness

검색결과 216건 처리시간 0.021초

Factor analysis of subgrade spring stiffness of circular tunnel

  • Xiangyu Guo;Liangjie Wang;Jun Wang;Junji An
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.229-237
    • /
    • 2024
  • This paper studied the subgrade spring stiffness and its influencing factors in the seismic deformation method of circular tunnel. Numerical calculations are performed for 3 influencing factors: stratum stiffness, tunnel diameter and burial depth. The results show that the stratum stiffness and tunnel diameter have great influence on the subgrade spring stiffness. The subgrade spring stiffness increases linearly with stratum stiffness increasement, and decreases with the tunnel diameter increasement. When the burial depth ratio (burial depth/tunnel diameter) exceeds to 5, the subgrade spring stiffness has little sensitivity to the burial depth. Then, a proposed formula of subgrade spring stiffness for the seismic deformation method of circular tunnel is proposed. Meanwhile, the internal force results of the seismic deformation method are larger than that of the dynamic time history method, but the internal force distributions of the two methods are consistent, that is, the structure exhibits elliptical deformation with the largest internal force at the conjugate 45° position of the circular tunnel. Therefore, the seismic deformation method based on the proposed formula can effectively reflect the deformation and internal force characteristics of the tunnel and has good applicability in engineering practice.

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.

그라우팅 강성도에 따른 2-Arch 터널의 거동 (Behavior of 2-Arch Tunnel with Stiffness of Grouting)

  • 이종민;이상덕
    • 터널과지하공간
    • /
    • 제20권4호
    • /
    • pp.260-266
    • /
    • 2010
  • 본 연구에서는 모형실험을 통한 2-Arch 터널의 거동과 주변지반의 거동으로부터 중앙부 Pilot 터널굴착 및 선행터널(우측터널)과 후행터널(좌측터널) 굴착에 따라 좌 우 터널 상호간에 미치는 영향을 분석하고자 하였으며, 보강영역의 상대강성비와 토피고에 따라 발생하는 원지반 이완영역 및 아칭효과에 의한 중앙필러 및 주변 지반의 하중전이 현상을 규명하고자 하였다. 이를 위하여 2-Arch 터널의 시공순서를 반영한 실험순서에 따라 모형실험을 수행하였으며, 보강영역의 강성 및 토피고를 변화시켜 이에 따른 2-Arch 터널의 변형 및 주변지반의 변위를 측정하였다.

Three-dimensional numerical parametric study of tunneling effects on existing pipelines

  • Shi, Jiangwei;Wang, Jinpu;Ji, Xiaojia;Liu, Huaqiang;Lu, Hu
    • Geomechanics and Engineering
    • /
    • 제30권4호
    • /
    • pp.383-392
    • /
    • 2022
  • Although pipelines are composed of segmental tubes commonly connected by rubber gasket or push-in joints, current studies mainly simplified pipelines as continuous structures. Effects of joints on three-dimensional deformation mechanisms of existing pipelines due to tunnel excavation are not fully understood. By conducting three-dimensional numerical analyses, effects of pipeline burial depth, tunnel burial depth, volume loss, pipeline stiffness and joint stiffness on bending strain and joint rotation of existing pipelines are explored. By increasing pipeline burial depth or decreasing tunnel cover depth, tunneling-induced pipeline deformations are substantially increased. As tunnel volume loss varies from 0.5% to 3%, the maximum bending strains and joint rotation angles of discontinuous pipelines increase by 1.08 and 9.20 times, respectively. By increasing flexural stiffness of pipe segment, a dramatic increase in the maximum joint rotation angles is observed in discontinuous pipelines. Thus, the safety of existing discontinuous pipelines due to tunnel excavation is controlled by joint rotation rather than bending strain. By increasing joint stiffness ratio from 0.0 (i.e., completely flexible joints) to 1.0 (i.e., continuous pipelines), tunneling-induced maximum pipeline settlements decrease by 22.8%-34.7%. If a jointed pipeline is simplified as a continuous structure, tunneling-induced settlement is thus underestimated, but bending strain is grossly overestimated. Thus, joints should be directly simulated in the analysis of tunnel-soil-pipeline interaction.

터널에 인접한 흙막이굴착 시 터널 이격거리에 따른 거동특성 (Behavior of braced wall due to distance between tunnel and wall in excavation of braced wall nearby tunnel)

  • 안성주;이상덕
    • 한국터널지하공간학회 논문집
    • /
    • 제20권4호
    • /
    • pp.657-669
    • /
    • 2018
  • 최근 복잡한 도심지 개발이 포화상태에 이르러 지하공간 개발에 많은 관심이 집중되고 있으며, 건물의 대형화 및 고층화로 지하공간의 활용도를 높이기 위해 대심도 굴착이 자주 발생하고 있다. 또한, 도심지 기존도로 하부로 지하철, 경전철 등이 건설되고 있어 대형건물 신축을 위한 흙막이 굴착 시 기존 지하구조물과 인접하여 주의를 요하는 사례가 자주 발생하고 있다. 따라서 본 연구에서는 모형시험을 통해 흙막이벽체 강성과 터널 이격거리에 따른 흙막이벽체의 거동특성 및 인접한 터널의 거동을 파악하고자 하였다. 연구 결과, 흙막이벽의 변형은 벽체의 강성이 증가함에 따라 감소하는 경향을 보였으며, 버팀대에 작용하는 축력도 벽체의 강성에 따라 다른 양상을 보였다. 흙막이벽체의 강성이 작은 경우(2 mm) 버팀대 축력이 최대가 되는 지점은 벽체의 0.3H 부근에서 나타났고, 흙막이벽체의 강성이 큰 경우(5 mm)에는 벽체의 0.7H 부근에서 버팀대 축력이 최대로 나타났다. 또한, 터널 내공변위는 흙막이벽체와의 이격거리가 가까울수록, 벽체의 강성이 작을수록 뚜렷하게 발생하였으며 내공변위가 우측하부로 집중되는 경향을 보였다. 지반굴착에 따른 지표침하량은 터널과 흙막이벽체의 이격거리가 가까울수록 지표침하 영향범위가 감소하는 경향을 보였으며 이는 터널의 강성이 영향을 미친것으로 판단된다.

굴착 진행과정을 고려한 터널 단면의 점탄성 및 탄소성 응력해석

  • 이연규;장현곤;이정인
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1991년도 추계학술발표회 논문집 지반공학에서의 컴퓨터 활용 COMPUTER UTILIZATION IN GEOTECHNICAL ENGINEERING
    • /
    • pp.152-165
    • /
    • 1991
  • Elasto-plastic and Visco-elastic sytress analyses were conducted for standard cross-section of subway tunnel in Seoul . Considering the procedure of excavation and reinforcement, excavated region was divided to multiple elements. And the progress of tunnel is simulated to be the removal of a series of layerd elements by means of diminishing the stiffness of the portion progressively. Another method is to be free of stress due to excavation instead of stiffness. In the analysis multiple element method was conducted with ADINA program, the stiffness removal method was adopted . For the same model, stress release method was carried out with Visco-Elastic Analysis program developed in Rock mechanics laboratory, Seoul National University(SNU-VBA) . When upper tunnel excavated, displacements in roof were same for two results, but when bottom tunnel removed completely , displacement changes of rock in the stress release method exhibited very small amount compared with stiffness removal method.

  • PDF

Dynamic behavior of submerged floating tunnels at the shore connection considering the use of flexible joints

  • Seok-Jun Kang;Minhyeong Lee;Jun-Beom An;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.101-112
    • /
    • 2023
  • When a submerged floating tunnel is connected to the ground, there is a risk of stress concentration at the shore connection owing to the displacement imbalance caused by low confinement pressures in water and high confinement pressures in the ground. Here, the effects of the boundary condition and stiffness of the joints installed at the shore connection on the behaviors of a submerged floating tunnel and its shore connection were analyzed using a numerical method. The analysis results obtained with fixed and ground boundaries were similar due to the high stiffness of the ground boundary. However, the stability of the shore connection was found to be improved with the ground boundary as a small displacement was allowed at the boundary. The effect of the joint stiffness was evaluated by investigating the dynamic behavior of the submerged floating tunnel, the magnitude of the load acting on the bored tunnel, and the stress distribution at the shore connection. A lower joint stiffness was found to correspond to more effective relief of the stress concentration at the shore connection. However, it was confirmed that joints with low stiffness also increase the submerged floating tunnel displacement and decrease the frequency of the dynamic behavior, causing a risk of increased resonance when wave loads with low frequency are applied. Therefore, it is necessary to derive the optimal joint stiffness that can achieve both stress concentration relief and resonance prevention during the design of shore connections to secure their dynamic stability.

인홀 시험을 이용한 터널 막장의 암반강성 측정에 대한 적용성 연구 (A Pilot Study of Stiffness Mesurements for Tunnel-Face Materials Using In-hole Seismic Method)

  • 목영진;김영수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.445-456
    • /
    • 2005
  • The research concentrates on improving the in-hole seismic probe, which has been developed in past five years, to be used in stiffness measurements of tunnel-face materials. The probe was down-sized to be fit in 45-mm diameter holes(or BX) drilled by a jumbo-drill, which is used to drill holes to install explosives for tunneling. Also trigger system was improved by using a down-speeding motor for operating convenience and air packing system was replaced with a set of plate-springs to eliminate supply of compressed air. These modifications are to adjust the probe for the unfavourable environment inside of tunnels and to test without any further drilling cost. The probe and testing procedure were successfully adopted with horizontal holes drilled by a jumbo-drill at a tunnel-face to evaluate the stiffness of rock mass. The measured shear wave velocities can be used to estimate deformation properties of rock mass for tunnel analyses.

  • PDF

지반의 강성변화에 따른 지반-터널 동적 상호작용 연구 (Ground-Tunnel Interaction Effect Depending on the Ground Stiffness)

  • 김대상
    • 터널과지하공간
    • /
    • 제11권4호
    • /
    • pp.339-343
    • /
    • 2001
  • 쉴드 터널과 같이 토사 지반 혹은 연암 지역에 건설되는 원형 단면을 가진 터널은 지진 시에 지반의 전단변형의 영향을 받아 좌우교차로 경사진 타원형상의 변형을 반복한다. 본 논문에서는 이 진동모드를 이용하여 지반-터널계의 상호작용에 관하여 검토하였다. 터널주변지반은 균질한 탄성체로 가정되었고 지반-터널라이닝 경계가 완전히 부착되어 있는 경우에 대한 상호작용효과를 검토하였다. 지반의 포아송비 및 강성이 증가할수록 지반으로부터 터널라이닝에 전달되는 변형률이 증가함을 확인할 수 있었다.

  • PDF

철근보강형강관이 적용된 터널의 안정성효과에 대한 연구 (The effects of stability of the tunnel reinforced by rebar steel pipe)

  • 김상환
    • 한국터널지하공간학회 논문집
    • /
    • 제12권5호
    • /
    • pp.389-397
    • /
    • 2010
  • 본 논문은 철근을 보강한 일반강관을 이용하여 지반을 보강할 경우 터널안정성의 효과에 대하여 연구한 것이다. 본 연구를 위하여 철근 보강형 강관과 일반강관의 휨강성을 이론과 실험을 통하여 비교 분석하였으며, 실질적으로 터널 안정성에 미지는 보강효과를 분석하기 위하여 수치해석을 실시하였다. 그 결과 일반강관에 비해 철근 보강형 강판의 경우 휨강성은 65% 증가되며, 터널 안정성 보강효과는 약 10% 내외 증가되는 것으로 나타났다. 따라서 철근 보강형 강판을 이용한 터널 보강공법의 경우 터널의 안정성을 경제적으로 확보할 수 있을 것으로 기대된다.