• Title/Summary/Keyword: tunnel linings

Search Result 90, Processing Time 0.042 seconds

A Numerical study on the Moisture Transport of Concrete Tunnel Linings with the Sprayable Waterproofing Membrane (뿜칠 방수 멤브레인이 시공된 터널 라이닝의 수분이동에 관한 수치해석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.212-219
    • /
    • 2016
  • The sprayable waterproofing membrane is installed between shotcrete to provide crack bridging and hence prevent flow of liquid water as a waterproofing system. Because of its material characteristics, the sprayable membrane can be constructed at more complex structure than sheet membrane. The main component of the sprayable waterproofing membrane is a polymer-based material, therefore, moisture can migrate through sprayable waterproofing membrane materials by capillary and vapor diffusion mechanisms. The moisture transport mechanisms can have an influence on the degree of saturation and may influence the pore pressure and risk of freeze-thaw damage on concrete linings and membrane. In this study, long-term hygrothermal behavior was simulated with considering moisture transport and long-term effects on saturation of tunnel linings. From the simulation, due to water absorption and vapor transport properties of sprayable membrane, change of relative humidity and water content in tunnel lining can be evaluated.

Estimation of Shape of Voids behind Concrete Tunnel Linings Using Radar of Three Dipole Antenna Type (3 다이폴 안테나 방식 레이더에 의한 콘크리트 터널 라이닝 배면 공동의 형상 추정)

  • Park Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.221-227
    • /
    • 2005
  • The presence of voids behind tunnel linings is very likely to result in settlement or structural collapse. One proposed method of detecting such voids by non-destructive method is radar. More than effectively judging the existence of voids behind tunnel linings, this study aims to develop the analysis algorithm of radar capable of estimation of the shape of specific voids. To acquire directional information and estimate the shape of three-dimensional voids, the radar of three-dipole antenna type is used. As a foundation to this ongoing research, an investigation of microwave polarization methods using three-dipole antenna carried out with various void orientations and void geometries. As a result, it is clarified that the response of four microwave polarization modes depends on void geometry and thus there is a possibility of identifying the geometry and orientation (the shape) of specific voids using radar of three-dipole antenna type.

Nonlinear simulation of tunnel linings with a simplified numerical modelling

  • Zhao, Huiling;Liu, Xian;Bao, Yihai;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.593-603
    • /
    • 2017
  • A high-efficiency simplified modelling approach is proposed for investigating the nonlinear responses of reinforced concrete linings of shield tunnels. Material and geometric nonlinearities are considered in the analysis of the lining structures undergoing large deformation before ultimately losing the load-carrying capacity. A beam-spring element model is developed to capture the force-transfer mechanism between lining segments and radial joints. The developed model is validated by comparing analyzed results to experimental results of a single-ring lining structure under two loading conditions: the ground overloading and the lateral unloading respectively. The results show that the lining structure under the lateral unloading due to excavation on the both sides of the tunnel is more vulnerable compared to the case of ground overloading on the top of the tunnel. A parameter study is conducted and results indicate that the lateral pressure coefficient has the greatest influence on the behaviour of the lining structure.

Estimation of Shape of Voids behind Concrete Tunnel Linings using Microwave Polarization Radar (다중 편파모드 방식 레이더에 의한 콘크리트 터널 라이닝 배면공동의 형상추정)

  • Park, Seok-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.408-411
    • /
    • 2004
  • The presence of voids behind tunnel linings results in their deterioration. One proposed method of effectively detecting such voids by non-destructive means is radar. This research is devoted to quantitatively evaluating the efficiency of such non-destructive tests with radar. As a foundation to this ongoing research, which aims to acquire directional information and estimate the shape of specific voids using radar of three-dipole antenna type, an investigation of microwave polarization methods is carried out with various void orientations and void geometries. As the results, it is clarified that the response of microwave polarization modes depends on void geometry and thus there is a possibility of identifying the geometry and orientation of specific voids using radar of three-dipole antenna type.

  • PDF

Analysis for Location of Reinforcing Bars and Detection of Shape of Voids in Concrete Structures using Electromagnetic Radar (전자파 레이더법에 의한 콘크리트 내 철근위치 및 공동형상 해석에 관한 연구)

  • 박석균
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.471-476
    • /
    • 2003
  • The presence of voids under pavements or behind tunnel linings results in their deterioration. To detect these voids effectively by non-destructive tests, a method using radar was proposed. In this research, not only the detection of shape of voids, but also the location of reinforcing bars by radar image analysis is investigated. The experiments and image processing were conducted to detect voids and to locate reinforcing bars in or under concrete pavements (or tunnel linings) with reinforcing bars. From the results, the fundamental algorithm for tracing the reinforcing bars and voids, improving the horizontal resolution of the object image and detecting shape of objects, was verified.

  • PDF

Properties of the SHOT PATCH Mortar a Wet System for Small Bore Tunnels (소구경 터널에 사용되는 SHOT PATCH용 모르타르의 특성)

  • 정민철;전용희;정종익;박길수
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.121-128
    • /
    • 1999
  • The SHO PATCH System Mortar is a mortar shotcreting system which uses fairly small machine and equipment, and is applied for shotcrete tunnel linings, in particular for small bore tunnels of aqueducts by the TBM(Tunnel Boring Machine) method, and for reparing tunnels suffering from spring water and deterioration. This study shows the characteristics of the new mortar shotcreting system, the SHOT PATCh System Mortar, which exhibits excellent shotcrete performance.

Non-contact mobile inspection system for tunnels: a review (터널의 비접촉 이동식 상태점검 장비: 리뷰)

  • Chulhee Lee;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.245-259
    • /
    • 2023
  • The purpose of this paper is to examine the most recent tunnel scanning systems to obtain insights for the development of non-contact mobile inspection system. Tunnel scanning systems are mostly being developed by adapting two main technologies, namely laser scanning and image scanning systems. Laser scanning system has the advantage of accurately recreating the geometric characteristics of tunnel linings from point cloud. On the other hand, image scanning system employs computer vision to effortlessly identify damage, such as fine cracks and leaks on the tunnel lining surface. The analysis suggests that image scanning system is more suitable for detecting damage on tunnel linings. A camera-based tunnel scanning system under development should include components such as lighting, data storage, power supply, and image-capturing controller synchronized with vehicle speed.

An Study on Heat Transfer Analysis to Concrete PC Pannel Lining under Tunnel Fire Scenario (터널 화재시나리오에 따른 콘크리트 PC패널 라이닝의 전열특성에 관한 해석적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hoon;Shin, Hyun-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.487-492
    • /
    • 2009
  • This study was performed FE numerical analysis under 120-minute fire conditions, using the ABAQUS, a wide use software, on the basis of the test results by concrete tunnel lining fire strengths (ISO, RWS, and MHC). The concrete material test was to secure the material properties of concrete linings, which were numerical analysis input conditions. And then built the material properties, such as specific heat, heat transfer rate, heat expansion rate, density, elasticity coefficient and compression strength under high temperature conditions, as database at 20 $^{\circ}C$ to 800 $^{\circ}C$, applying them to analysis as input values. As a result, the tunnel linings under RWS fire conditions saw fire temperature rose to maximum 1119 $^{\circ}C$at the location of 5 mm above a thermal surface, and saw surface temperature amount to 1214 $^{\circ}C$ in the middle part.

  • PDF