• Title/Summary/Keyword: tunnel influence zone

Search Result 73, Processing Time 0.029 seconds

A Numerical Study on the Response of Jointed Rock Mass Due to Thermal Loading of Radioactive Waste (방사성 폐기물의 열하중에 의한 절리암반의 거동에 관한 수치해석적 연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.102-118
    • /
    • 1994
  • Thermomechanical analysis is conducted on the radioactive repository in deep rock mass considering the in-situ stress, excavation and thermal loading of a radioactive waste. Thermomechanical properties of a discontinuous rock mass are estimated by a theoretical method so called sequential analysis. Using the estimated properties as input for finite element analysis, the influence on temperature distribution and thermal stress is analyzed within the scope of 2-dimensional steady state and transient heat transfer and coupled thermal elastic plastic behaviour. Granitic rock mass is taken for this analysis. The analysis is done for two different rock mass conditions, i.e. continuous-homogeneous and highly jointed conditions, for the purpose of comparison. In the case of steady state, the extent of disturbed zone around the storage tunnel due to the heat production of the spent-fuel canister varies depending on the thermomechanical properties of the rock mass. In the case of transient analyses, the response of the jointed rock mass to the thermal loading after radioactive waste disposal varies significantly with time, resulting in dramatic changes in the both size and location of disturbed zone.

  • PDF

Prediction of Change in Ground Condition Ahead of Tunnel Face Using Three-dimensional Convergence Analysis (터널 3차원 내공변위의 해석을 통한 막장전방 지반상태변화 예측)

  • 김기선;김영섭;유광호;박연준;이대혁
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.476-485
    • /
    • 2003
  • The purpose of this study is to present an analysis method for the prediction of the change of ground conditions. To this end, three-dimensional convergence displacements is analyzed in several ways to estimate the trend of displacement change. Three-dimensional arching effect is occurred around the unsupported excavation surface including tunnel face when a tunnel is excavated in a stable rock mass. If the ground condition ahead of tunnel face changes or a weak fracture zone exists a specific trend of displacement change is known to be occurred from the results of the existing researches. The existence of a discontinuity, whose change in front of the tunnel face, can be predicted from the ratio of L/C (longitudinal displacement at crown divided by settlement at crown) etc. Therefore, the change of ground condition and the existence of a fracture zone ahead of tunnel face can be predicted by monitoring three-dimensional absolute displacements during excavation, and applying the methodology presented in this study.

Influence of eccentric load and lateral earth pressure on the tunnel behavior (편토압 및 측압이 터널거동에 미치는 영향)

  • Ahn, Hyun-Ho;Suh, Byung-Wook;Kim, Dong-Hyun;Min, Dong-Ho;Lee, Sun-Bok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • Scaled model tests were performed to explore the influence of eccentric load and lateral earth pressure on tunnel behavior and their results were verified through numerical analyses. As a method for reducing the eccentric load acting on tunnel, an eccentric supporting system (ESS) was proposed and its applicability was investigated. Experimental results showed that displacement decreased overall and the load inducing initial cracks increased as the eccentric supporting system was applied. The maximum eccentric vertical load which impacted the stability of tunnel was also increased. The test results on the influence of lateral earth pressure on tunnel behavior showed that the general aspect of displacement and crack growth changed significantly depending on the coefficient of lateral earth pressure. In addition, the weak zone In view of stability varied as well.

  • PDF

Numerical Analysis on the Effect of Heterogeneous/Anisotropic Nature of Rock Masses on Displacement Behavior of Tunnel (비균질/이방성 암반에서의 터널 거동 분석을 위한 수치해석적 연구)

  • Baek, Seung-Han;Kim, Chang-Yong;Kim, Kwang-Yeom;Hong, Sung-Wan;Moon, Hyun-Koo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.939-948
    • /
    • 2006
  • The structural anisotropy and heterogeneity of rock mass, caused by discontinuities and weak zones, have a great influence on the deformation behavior of tunnel. Tunnel construction in these complex ground conditions is very difficult. No matter how excellent a geological investigation is, local uncertainties of rock mass conditions still remain. Under these uncertain circumstances, an accurate forecast of the ground conditions ahead of the advancing tunnel face is indispensable to safe and economic tunnel construction. This paper presents the effect of anisotropy and heterogeneity of the rock masses to be excavated by numerical analysis. The influences of distance from weak zone, the size or dimension, the different stiffness and the orientation of weak zones are analysedby 2-D and 3-D finite element analysis. By analysing these numerical results, the tunnel behavior due to excavation can be well understood and the prediction of rock mass condition ahead of tunnel face can be possible.

  • PDF

The Prediction of Ground Condition ahead of the Tunnel Face using 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 터널막장 전방 지반 상태의 예측)

  • You Kwang-Ho;Song Han-Chan;Kim Ki-Sun;Lee Dae-Hyuck;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.440-449
    • /
    • 2004
  • Rock mass includes natural discontinuities such as joints and faults during its formation. Discontinuities are also referred as planes of weakness because of their weak mechanical characteristics. In the design of underground structures, it is necessary to consider the properties of discontinuities to insure the stability. During the excavation of a tunnel, these discontinuities have to be identified as early as possible so that proper change in excavation method or support design can be made accordingly. The excavation of the tunnel in a stable rock mass causes a 3-dimensional arching effect around the excavation face. It was revealed by previous studies that the existence of a weak zone or a fault zone ahead of tunnel foe induces a typical displacement tendency of convergence. For better understanding of the meaning of influence/trend lines of various displacement components, three-dimensional numerical analyses were conducted while varying deformation moduli, thicknesses and orientations of discontinuities. Numerical results showed that the changes in influence/trend lines of various displacement components were very similar to those by measurements. The discrepancies from the expected values were dependent on the physical properties, thicknesses and orientations of discontinuities.

The Inflence of Excavation Damaged Zone around an Underground Research Tunnel in KAERI (한국원자력연구원 내 지하처분연구시설 주변의 암반 손상대 영향 평가)

  • Kwon, S.;Kim, J.S.;Cho, W.J.
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.11-19
    • /
    • 2008
  • The development of an excavation damaged zone, EDZ, due to the blasting impact and stress redistribution after excavation, can influence on the long tenn stability, economy, and safety of the underground excavation. In this study, the size and characteristics of an EDZ around an underground research tunnel, which was excavated by controlled blasting, in KAERI were investigated. The results were implemented into the modelling for evaluating the influence of an EDZ on hydro-mechanical behavior of the tunnel. From in situ tests at KURT, it was possible to determine that the size of EDZ was about l.5rn. Goodman jack tests and laboratory tests showed that the rock properties in the EDZ were changed about 50% compared to the rock properties before blasting. The size and property change in the EDZ were implemented to a hydro-mechanical coupling analysis. In the modeling, rock strengths and elastic modulus were assumed to be decreased 50% and. the hydraulic conductivity was increased 1 order. From the analysis, it was possible to see that the displacement was increased while the stress was decreased because of an EDZ. When an EDZ was considered in the model, the tunnel inflow was increased about 20% compared to the case without an EDZ.

Smart monitoring analysis system for tunnels in heterogeneous rock mass

  • Kim, Chang-Yong;Hong, Sung-Wan;Bae, Gyu-Jin;Kim, Kwang-Yeom;Schubert, Wulf
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.255-261
    • /
    • 2003
  • Tunnelling in poor and heterogeneous ground is a difficult task. Even with a good geological investigation, uncertainties with respect to the local rock mass structure will remain. Especially for such conditions, a reliable short-term prediction of the conditions ahead and outside the tunnel profile are of paramount importance for the choice of appropriate excavation and support methods. The information contained in the absolute displacement monitoring data allows a comprehensive evaluation of the displacements and the determination of the behaviour and influence of an anisotropic rock mass. Case histories and with numerical simulations show, that changes in the displacement vector orientation can indicate changing rock mass conditions ahead of the tunnel face (Schubert & Budil 1995, Steindorfer & Schubert 1997). Further research has been conducted to quantify the influence of weak zones on stresses and displacements (Grossauer 2001). Sellner (2000) developed software, which allows predicting displacements (GeoFit$\circledR$). The function parameters describe the time and advance dependent deformation of a tunnel. Routinely applying this method at each measuring section allows determining trends of those parameters. It shows, that the trends of parameter sets indicate changes in the stiffness of the rock mass outside the tunnel in a similar way, as the displacement vector orientation does. Three-dimensional Finite Element simulations of different weakness zone properties, thicknesses, and orientations relative to the tunnel axis were carried out and the function parameters evaluated from the results. The results are compared to monitoring results from alpine tunnels in heterogeneous rock. The good qualitative correlation between trends observed on site and numerical results gives hope that by a routine determination of the function parameters during excavation the prediction of rock mass conditions ahead of the tunnel face can be improved. Implementing the rules developed from experience and simulations into the monitoring data evaluation program allows to automatically issuing information on the expected rock mass quality ahead of the tunnel.

  • PDF

Load-transfer mechanism in the ground with discontinuity planes during tunnel excavation (불연속면이 존재하는 지반에서 터널굴착에 의한 하중전이)

  • Lee, Sang-Duk;Byun, Gwang-Wook;Yoo, Kun-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • In this study, the influence of the presence of discontinuity planes on the load transfer mechanism and the pattern of loosening zone was studied based on the laboratory test. The trap-door and the reaction plates are installed as the bottom plane of the model box. The vertical discontinuity plane is installed in the dry sand. Various overburden heights and locations of discontinuity planes are applied as major factors in this study. The results show that at higher overburden heights over about 1.5 times the excavation width, the ratio of the transferred stress to the insitu stress converges to a certain value even if the overburden height increases further. The results also show that the discontinuity plane gives relatively larger influence on the load transfer mechanism, that produces the unsymmetrical load concentration, when the discontinuity plane locates within the tunnel width. When the discontinuity plane locates outside the tunnel width, the unsymmetrical load concentration is reduced considerably.

  • PDF

A study on analysis method for the prediction of changes in ground condition ahead of the tunnel face (터널 막장 전방의 지반 변화 예측을 위한 해석기법에 관한 연구)

  • Kim, Young-Sub;Kim, Chan-Dong;Jung, Yong-Chan;Lee, Jae-Sung;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.71-83
    • /
    • 2004
  • The purpose of this study is to present an analysis method for the prediction of the changes m ground conditions. To this end, three dimensional convergence displacements are analyzed in several ways to estimate the trend of displacement changes. Three-dimensional arching effect is occurred around the unsupported excavation surface including tunnel face when a tunnel is excavated in a stable rock mass. If the ground condition ahead of tunnel face changes or a weak zone exists, a diagnostic trend of displacement change is observed by the 3 dimensional measurement and numerical analysis. Therefore, the change of ground condition and the existence of a weak zone ahead of tunnel face can be predicted by monitoring 3-dimensional absolute displacements during excavation, and applying the methodology (the ratio of L/C, $C/C_o$, etc.) presented in this study.

  • PDF

A study on the effect of the locations of pile tips on the behaviour of piles to adjacent tunnelling (말뚝선단의 위치가 터널근접 시공에 의한 말뚝의 거동에 미치는 영향에 대한 연구)

  • Lee, Cheol-Ju;Jeon, Young Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.91-105
    • /
    • 2015
  • In the current work, a series of three-dimensional (3D) finite element analyses have been performed to study the effects of the locations of pile tips on the behaviour of single piles to adjacent tunnelling. In the numerical modelling, several key issues, such as tunnelling-induced pile head settlements, axial pile forces, interface shear stresses and apparent factors of safety have been studied. When the pile tips are inside the influence zone which considers the relative pile tip location with respect to the tunnel position, tunnelling-induced pile head settlements are larger than those computed from the greenfield condition. However, when the pile tips were outside the influence zone, an opposite trend was observed. When the pile tips were inside the influence zone, tunnelling-induced tensile pile forces developed; however, when the pile tips were outside the influence zone, tunnelling-induced compressive pile forces were mobilised, associated with larger settlements of the surrounding soil than the pile settlements. It has been shown that the increases in the tunnelling-induced pile head settlements have resulted in reductions of the apparent factor of safety by about 50% when the pile tips are inside the influence zone, therefore severly affecting the serviceability of piles. The pile behaviour, when considering the location of pile tips with regards to the influence zone, has been analysed in great detail by taking the tunnelling-induced pile head settlements, axial pile force and apparent factor of safety into account.