• 제목/요약/키워드: tunnel failure

검색결과 442건 처리시간 0.025초

터널의 안전율 평가 시 지보재 파괴 고려 방안 연구 (A Methodolody of Considering the Failure of Supports in Evaluating Tunnel Safety Factors)

  • 유광호;홍근영;박연준;이현구;김재권
    • 한국터널공학회:학술대회논문집
    • /
    • 한국터널공학회 2005년도 학술발표회 논문집
    • /
    • pp.213-224
    • /
    • 2005
  • The safety factor of a tunnel considering the failure of supports is important because the failure of supports might cause the collapse of the tunnel. In the previous studies, shotcrete was modelled as beam elements and the failure of the shotcrete was checked according to the allowable working stress concept. In this study, shotcrete was modelled by both beam elements and continuum (elasto-plastic) elements. Safety factors of tunnels were estimated by two dimensional numerical analysis with varying rock mass class, coefficient of lateral pressure, thickness of shotcrete, rock bolt reinforcement and excavation method. Also the study suggested not only a proper amount of supports but also modelling method.

  • PDF

The ultimate bearing capacity of rectangular tunnel lining assembled by composite segments: An experimental investigation

  • Liu, Xian;Hu, Xinyu;Guan, Linxing;Sun, Wei
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.481-497
    • /
    • 2017
  • In this paper, full-scale loading tests were performed on a rectangular segmental tunnel lining, which was assembled by steel composite segments, to investigate its load-bearing structural behavior and failure mechanism. The tests were also used to confirm the composite effect by adding concrete inside to satisfy the required performance under severe loading conditions. The design of the tested rectangular segmental lining and the loading scheme are also described to better understand the bearing capacity of this composite lining structure. It is found that the structural ultimate bearing capacity is governed by the bond capacity between steel plates and the tunnel segment. The failure of the strengthened lining is the consequence of local failure of the bond at waist joints. This led to a fast decrease of the overall stiffness and eventually a loss of the structural integrity.

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

한계해석법에 의한 파일-지반-터널 상호작용 해석 (Upper and Lower Bound Solutions for Pile-Soil-Tunnel Interaction)

  • 이용주;신종호
    • 한국터널공학회:학술대회논문집
    • /
    • 한국터널공학회 2005년도 학술발표회 논문집
    • /
    • pp.77-86
    • /
    • 2005
  • In urban areas, new tunnel construction work is often taking place adjacent to existing piled foundations. In this case, careful assessment for the pile-soil-tunnel interaction is required. However, research on this topic has not been much reported, and currently only limited information is available. In this study, the complex pile-soil-tunnel interaction is investigated using the upper and lower bound methods based on kinematically possible failure mechanism and statically admissible stress field respectively. It is believed that the limit theorem is useful in understanding the complicated interaction behaviour mechanism and applicable to the pile-soil-tunnel interaction problem. The results are compared with numerical analysis. The material deformation patterns and strain data from the FE output are shown to compare well with the equivalent physical model tests. Admissible stress fields and the failure mechanisms are presented and used to develop upper and lower bound solutions to assess minimum support pressures within the tunnel.

  • PDF

강섬유 보강 터널 라이닝 콘크리트의 성능 평가 (Performance Estimation of Tunnel Lining Concrete Reinforced Steel Fiber)

  • 전찬기;김수만;이명수;이종은;전중규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.579-582
    • /
    • 2005
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, steel fiber reinforcement concrete(SFRC) has better crack properties than that of reinforced concrete. In this study, mechanical behaviour of a tunnel lining was examined by model tests. The model tests were carried out under various conditions taking different loading shapes, thicknesses and leakage of lining, and volume content of steel fiber. From these model test, the cracking load, the failure load, defection and cracking position and type were examined and the characteristics of deformation and failure for tunnel lining were estimated and researched.

  • PDF

NATM 터널의 대심도 풍화대층에서의 지반거동 및 보강방법 (Ground Behavior and Reinforcing Methods of NATM Tunnel through Deep Weathered Zone)

  • 성화돈;안정환;천병식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1782-1788
    • /
    • 2007
  • This study analyzed ground settlement and ground stress depending on tunnel excavation and the ground reinforcing grouting methods for double line road tunnel through deep weathered zone. Diameter of double line road tunnel was approximately 12m and umbrella arch method and side wall reinforcing grouting were applied. The ring-cut split excavation method and CD-cut excavation method for excavation method were applied. Analysis of failure rate and vertical stress ratio show that the tunnel for which the height of the cover(H) was higher than four times the diameter, it can be considered a deep tunnel. Comparisons of various excavation and ground reinforcement methods were showed that CD-cut method results in lower surface and crown settlement, and lower failure rate than where using Ring-cut split method. In addition the side wall reinforcing grouting resulted in reduction of tunnel displacement and settlement.

  • PDF

축소모형실험을 이용한 공동지반에서의 터널 거동특성 (Behaviour Characteristics of Tunnel in the Cavity Ground by using Scale Model Tests)

  • 정지승;문인기;유찬호
    • 한국지반환경공학회 논문집
    • /
    • 제14권12호
    • /
    • pp.61-69
    • /
    • 2013
  • 도로 및 철도의 터널 공사가 증가함에 따라 공사 시에 다양한 지반조건에서 터널 공사 단계를 진행하고 있다. 특히, 석회암 지역에서 터널 공사를 진행하게 되는 경우에는 대부분의 공동이 터널 계획구간에 존재하고 있는 실정이다. 하나 또는 그 이상의 공동은 터널의 안정성을 저하하는 것으로 예상된다. 따라서, 본 연구에서는 터널과 공동과의 상호 영향을 알아보고자 실내 모형 축소실험과 수치해석을 시행하였다. 실내모형실험은 터널과 공동 간의 거리에 따른 모형지반의 파괴하중을 확인하였고, 공동의 형상에 따른 파괴하중을 확인하였다. 실내모형실험결과 파괴하중은 공동과 터널 간의 거리가 0.5D 이내로 감소함에 따라서 파괴하중 역시 감소하는 것으로 나타났다. 수치해석은 모형실험의 검증을 위해 시행하였으며, 실내모형실험과 동일하게 터널과 공동 간의 거리가 0.5D 이내로 근접하는 경우 터널의 안정성이 저하되는 것으로 확인되었다.

Reliability analysis of shallow tunnel with surface settlement

  • Yang, X.L.;Li, W.T.
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.313-326
    • /
    • 2017
  • Based on the reliability theory and limit analysis method, the roof stability of a shallow tunnel is investigated under the condition of surface settlement. Nonlinear Hoek-Brown failure criterion is adopted in the present analysis. With the consideration of surface settlement, the internal energy and external work are calculated. Equating the rate of energy dissipation to the external rate of work, the expression of support pressure is derived. With the help of variational approach, a performance function is proposed to reliability analysis. Improved response surface method is used to calculate the Hasofer-Lind reliability index and the failure probability. In order to assess the validity of the present results, Monte-Carlo simulation is performed to examine the correctness. Sensitivity analysis is used to estimate the influence of different variables on reliability index. Among random variables, the unit weight significantly affects the reliability index. It is found that the greater coefficient of variation of variables lead to the higher failure probability. On the basis of the discussions, the reliability-based design is achieved to calculate the required tunnel support pressure under different situations when the target reliability index is obtained.

Surrounding rock pressure of shallow-buried bilateral bias tunnels under earthquake

  • Liu, Xin-Rong;Li, Dong-Liang;Wang, Jun-Bao;Wang, Zhen
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.427-445
    • /
    • 2015
  • By means of finite element numerical simulation and pseudo-static method, the shallow-buried bilateral bias twin-tube tunnel subject to horizontal and vertical seismic forces are researched. The research includes rupture angles, the failure mode of the tunnel and the distribution of surrounding rock relaxation pressure. And the analytical solution for surrounding rock relaxation pressure is derived. For such tunnels, their surrounding rock has sliding rupture planes that generally follow a "W" shape. The failure area is determined by the rupture angles. Research shows that for shallow-buried bilateral bias twin-tube tunnel under the action of seismic force, the load effect on the tunnel structure shall be studied based on the relaxation pressure induced by surrounding rock failure. The rupture angles between the left tube and the right tube are independent of the surface slope. For tunnels with surrounding rock of Grade IV, V and VI, which is of poor quality, the recommended reinforcement range for the rupture angles is provided when the seismic fortification intensity is VI, VII, VIII and IX respectively. This study is expected to provide theoretical support regarding the ground reinforcement range for the shallow-buried bilateral bias twin-tube tunnel under seismic force.

응력조건에 따른 원형터널 주변의 취성파괴범위와 파괴심도 (The extent and depth of brittle failure around circular tunnel with stress conditions)

  • 천대성;박철환;전석원;박찬
    • 터널과지하공간
    • /
    • 제17권4호
    • /
    • pp.311-321
    • /
    • 2007
  • 경암 내 암반구조물의 파괴는 현지응력의 크기, 무결암의 강도 그리고 암반 내에 존재하는 불연속면의 상태에 의해 결정되며, 특히 높은 현지응력이 작용하는 경우 유도응력에 의해 취성파괴가 발생할 수 있다. 취성 파괴의 특성은 파괴수준, 파괴개시시점, 파괴범위와 파괴심도 등으로 구분할 수 있으며, 암반구조물의 안정성을 확보하기 위해서는 응력조건에 따른 취성파괴의 특성을 규명하여야 한다. 본 연구에서는 취성파괴가 발생한 상태에서 응력조건에 따른 파괴범위와 파괴심도를 평가하고자 하였다. 이를 위해 진삼축 압축응력조건에서 모형실험을 수행하였으며, 취성파괴가 발생한 모형실험체에 대하여 육안관찰과 컴퓨터단층촬영을 수행하여 파괴심도와 파괴범위를 결정하였다. 파괴심도는 터널단면에 작용하는 축차응력의 크기에 영향을 받으나 파괴범위의 경우 응력조건에 따른 뚜렷한 경향성을 보이지 않는 것으로 나타났다.