• Title/Summary/Keyword: tunnel face

Search Result 420, Processing Time 0.022 seconds

A Pilot Study of Stiffness Mesurements for Tunnel-Face Materials Using In-hole Seismic Method (인홀 시험을 이용한 터널 막장의 암반강성 측정에 대한 적용성 연구)

  • Mok Young-Jin;Kim Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.133-142
    • /
    • 2005
  • The research concentrates on improving the in-hole seismic probe, which has been developed in past five years, to be used in stiffness measurements of tunnel-face materials. The size of probe was reduced to be fit in 45-mm diameter holes (or BX) drilled by a jumbo-drill, which is used to drill holes to install explosives for tunneling. Also trigger system was improved by using a down-speeding motor for operating convenience and air packing system was replaced with a set of plate-springs to eliminate supply of compressed air. These modifications are to adjust the probe for the unfavourable environment inside of tunnels and to test without any further drilling cost. The probe and testing procedure were successfully adopted with horizontal holes drilled by a jumbo-drill at a tunnel-face to evaluate the stiffness of rock mass. The measured shear wave velocities can be used to estimate deformation properties of rock mass for tunnel analyses.

Characteristics of Tunnel Convergence Behaviour based on Variation of Rock Mass Rating (암반 등급 변화에 따른 터널 내공 변위 거동 특설)

  • Kim, Kwang-Yeom
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.545-553
    • /
    • 2008
  • Face mapping and displacement monitoring during tunnel construction are the most influential information for the stability assessment of ground and around structures. Especially, the result of face mapping and displacement analysis is essential to the excavation and support design in NATM which is based on the drilling and blasting. However, there have not been so many studies to put those useful information into practice for decision-making process during construction. The study reviewed the tunnel behaviour based on the RMR rating and displacement monitoring when the geological condition of rock mass varies inevitably. The study analysed the crown settlement using convergence equation in order to compensate the disparity induced by the location and time of measurement and found a distinct relation between the geological condition and the line of influence. As a result of analysing the various parameters related to the tunnel convergence according to the geological condition, the study suggested the basic knowledge about the relation between face mapping and displacement behaviour of tunnel.

Numerical Analysis on the Effect of Heterogeneous/Anisotropic Nature of Rock Masses on Displacement Behavior of Tunnel (비균질/이방성 암반에서의 터널 거동 분석을 위한 수치해석적 연구)

  • Baek, Seung-Han;Kim, Chang-Yong;Kim, Kwang-Yeom;Hong, Sung-Wan;Moon, Hyun-Koo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.939-948
    • /
    • 2006
  • The structural anisotropy and heterogeneity of rock mass, caused by discontinuities and weak zones, have a great influence on the deformation behavior of tunnel. Tunnel construction in these complex ground conditions is very difficult. No matter how excellent a geological investigation is, local uncertainties of rock mass conditions still remain. Under these uncertain circumstances, an accurate forecast of the ground conditions ahead of the advancing tunnel face is indispensable to safe and economic tunnel construction. This paper presents the effect of anisotropy and heterogeneity of the rock masses to be excavated by numerical analysis. The influences of distance from weak zone, the size or dimension, the different stiffness and the orientation of weak zones are analysedby 2-D and 3-D finite element analysis. By analysing these numerical results, the tunnel behavior due to excavation can be well understood and the prediction of rock mass condition ahead of tunnel face can be possible.

  • PDF

Tunnel Overbreak Management System Using Overbreak Resistance Factor (여굴저항도를 이용한 터널 발파 여굴 관리 시스템)

  • Jang, Hyongdoo
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • When tunnel is excavated via drilling and blasting, the excessive overbreak is the primary cause of personal or equipment safety hazards and increasing the cost of the tunnel operation owing to additional ground supports such as shotcrete. The practical management of overbreak is extremely difficult due to the complex causative mechanism of it. The study examines the relationship between rock mass characteristics (unsupported face condition, uniaxial compressive strength, face weathering and alteration, discontinuities- frequency, condition and angle between discontinuities and tunnel contour) and the depth of overbreak through using feed-forward artificial neuron networks. Then, Overbreak Resistance Factor (ORF) has been developed based on the weights of rock mass parameters to the overbreak phenomenon. Also, a new concept of tunnel overbreak management system using ORF has been suggested.

Blow-out pressure of tunnels excavated in Hoek-Brown rock masses

  • Alireza Seghateh Mojtahedi;Meysam Imani;Ahmad Fahimifar
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.323-339
    • /
    • 2024
  • If the pressure exerted on the face of a tunnel excavated by TBM exceeds a threshold, it leads to failure of the soil or rock masses ahead of the tunnel face, which results in heaving the ground surface. In the current research, the upper bound method of limit analysis was employed to calculate the blow-out pressure of tunnels excavated in rock masses obeying the Hoek-Brown nonlinear criterion. The results of the proposed method were compared with three-dimensional finite element models, as well as the available methods in the literature. The results show that when σci, mi, and GSI increase, the blow-out pressure increases as well. By doubling the tunnel diameter, the blow-out pressure reduces up to 54.6%. Also, by doubling the height of the tunnel cover and the surcharge pressure exerted on the ground surface above the tunnel, the blow-out pressure increased up to 74.9% and 5.4%, respectively. With 35% increase in the unit weight of the rock mass surrounding the tunnel, the blow-out pressure increases in the range of 14.8% to 19.6%. The results of the present study were provided in simple design graphs that can easily be used in practical applications in order to obtain the blow-out pressure.

Feasibility test on EDZ detection by using borehole radar survey

  • Cho, Seong-Jun;Kim, Jung-Ho;Son, Jeong-Sul;Kim, Chang-Ryol;Sugn, Nak-Hun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.239-244
    • /
    • 2006
  • Borehole radar reflection surveys were carried out in the horizontal borehole to detect EDZ while constructing the tunnel for the research facility of the nuclear waste disposal in Korea. The horizontal borehole has been bored at a length of 35 m from shelter to be parallel with the tunnel which would be planed. While the tunnel has been constructing with the explosive excavation, the borehole radar reflection surveys carried out 5 times with the interval of 2 or 4 days for monitoring EDZ. The most typical change of the reflection event resulted from the face of the wall of tunnel which had been produced newly by the excavation of the tunnel daily, EDZ has been detected with constructing images of difference between two measurement stages, and also the change of EDZ through the time has been done, which is due to the generation of crack and weakening of the rock strength of the face of the tunnel's wall near previous portion of the face of a blind end of tunnel according to explosive excavation.

  • PDF

Digital Mapping and 3D Visualization of Tunnel Face Information under Construction (터널 시공중 굴착면 지질정보 디지털화 및 3D 가시화)

  • Kwon, Young-Ju;Lee, Cheong;Kim, Jin-Woung;Kim, Kwang-Yeom;Yim, Sung-Bin;Choi, Jai-Won
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.649-659
    • /
    • 2010
  • In this study, a tunnel information database system was developed to optimize the process of assessing and analyzing geological information from the life cycle of tunnel construction. All data from every stage in tunnel construction can be put into the system and be utilized for the decision making. In the system, tunnel face mapping information can be managed by digital format which can be easily transformed into 3D visualization module and thus help analyzing geological discontinuities. The system was applied to waterway and road tunnel in domestic area to verify its effectiveness.

A tunnel back analysis using artificial neural network technique and face mapping data (인공신경망 기법과 굴진면 관찰자료를 활용한 터널 역해석 연구)

  • You, Kwang-Ho;Kim, Kyoung-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.357-374
    • /
    • 2012
  • Considerable uncertainties are included in ground properties used for tunnel designs due to the limited investigation and tests. In this study, a back analysis was performed to find optimal ground properties based on artificial neural network using both face mapping data and convergence measurement data. First of all, the rock class of a study tunnel is determined from face mapping data. Then the possible ranges of ground properties were selected for each rock class through a literature review on the previous studies and utilized to establish more precise learning data. To find an optimal training model, a sensitivity analysis was also conducted by varying the number of hidden layers and the number of nodes more minutely than the previous study. As a result of this study, more accurate ground properties could be obtained. Therefore it was confirmed that the accuracy of the results could be increased by making use of not only convergence measurement data but also face mapping data in tunnel back analyses using artificial neural network. In future, it is expected that the methodology suggested in this study can be used to estimate ground properties more precisely.

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

Main challenges for deep subsea tunnels based on norwegian experience

  • Nilsen, Bjorn
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.563-573
    • /
    • 2015
  • For hard rock subsea tunnels the most challenging rock mass conditions are in most cases represented by major faults/weakness zones. Poor stability weakness zones with large water inflow can be particularly problematic. At the pre-construction investigation stage, geological and engineering geological mapping, refraction seismic investigation and core drilling are the most important methods for identifying potentially adverse rock mass conditions. During excavation, continuous engineering geological mapping and probe drilling ahead of the face are carried out, and for the most recent Norwegian subsea tunnel projects, MWD (Measurement While Drilling) has also been used. During excavation, grouting ahead of the tunnel face is carried out whenever required according to the results from probe drilling. Sealing of water inflow by pre-grouting is particularly important before tunnelling into a section of poor rock mass quality. When excavating through weakness zones, a special methodology is normally applied, including spiling bolts, short blast round lengths and installation of reinforced sprayed concrete arches close to the face. The basic aspects of investigation, support and tunnelling for major weakness zones are discussed in this paper and illustrated by cases representing two very challenging projects which were recently completed (Atlantic Ocean tunnel and T-connection), one which is under construction (Ryfast) and one which is planned to be built in the near future (Rogfast).