• Title/Summary/Keyword: tunnel cross-section

Search Result 209, Processing Time 0.023 seconds

Investigation of Vortical Flow Field Visualization by Micro Water Droplet and Laser Beam Sheet (미세수적과 레이저 평면광에 의한 와류장의 가시화 연구)

  • 이기영;손명환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • A new off-surface visualization method of using the micro water droplet and laser beam sheet was presented. About a size of 5 to TEX>$10\mu\textrm{m}$ micro water droplet could be made from home-style ultrasonic humidifier, A 3 W Argon ion laser and cylindrical lens were used to generate a laser beam sheet, which interrogate specific cross section of the vortical flow field. Application of this new visualization method was conducted in KAFA small-sized low speed wind tunnel of having the test section of 0TEX>$0.9 m(W){\times}$0.9 m(H){\times}2.1 m(L)$$$. Visualization results show this method relatively easy and safe flow visualization method for wind tunnel testing. Moreover, this method is also make up for the disadvantage of smoke visualization, and can be applied to higher flow velocity range than that of smoke visualization.

Development of a programming logic to estimate the wall friction coefficient in vehicle tunnels with piston effects (교통환기력이 작용하는 터널 내 벽면마찰계수 추정을 위한 프로그램 로직 개발)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Young-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2018
  • Generally, the total ventilation resistance coefficient in a tunnel consists of inlet/outlet loss coefficient, wall friction coefficient, and other loss coefficient caused by sudden expansion and contraction of cross-section, etc. For the tunnel before opening, when the running ventilation fan is stopped, the wind speed in the tunnel is reduced by the total ventilation resistance drag. The velocity decay method is comparatively stable and easy to estimate the wall friction coefficient in the pre-opening tunnel. However, the existing study reported that when the converging wind speed is a negative value after the ventilation fan stops, it is difficult to estimate the wall friction coefficient according to the velocity decay method. On the other hand, for the operating tunnel in which the piston effect acts, a more complex process is performed; however, a reasonable wall friction coefficient can be estimated. This paper aims at suggesting a method to minimize the measurement variables of the piston effect and reviewing a method that can be applied to the operating tunnel. Also, in this study, a new method has been developed, which enables to calculate an variation of the piston effect if the piston effect is constant with a sudden change of external natural wind occurring while the wind speed in the tunnel decreases after the ventilation fan stops, and a programming logic has been also developed, which enables dynamic simulation analysis in order to estimate the wall friction coefficient in a tunnel.

Effects of Number of Sides on Aerodynamic Characteristics of Super-Tall Buildings (단면의 변의 수가 초고층 건물의 공력특성에 미치는 영향)

  • Kim, Yong-Chul;Bandi, Eswara Kumar;Tamura, Yukio;Yoshida, Akihito;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.83-90
    • /
    • 2013
  • A series of wind tunnel tests were conducted on 7 super-tall buildings with various polygon cross-sections, including triangle, square, pentagon, hexagon, octagon, dodecagon, and circular. The primary purpose of the present study is to investigate the effect of increasing number of sides on aerodynamic characteristics for super-tall buildings. Wind tunnel tests were conducted under the turbulent boundary layers whose power-law exponent is 0.27. Fluctuating wind pressures from more than 200 pressure taps were recorded simultaneously, and time series of overturning moments were calculated considering tributary area of each pressure tap. The results show that the overturning moment coefficients and the spectral values decrease with increasing number of sides, and the largest mean and fluctuating overturning moments were found for the triangular super-tall building, and the largest spectral values were found for the square super-tall building. The analysis should be conducted more in detail, but currently it can be roughly said that there seems to be a little differences in the aerodynamic characteristics for the super-tall buildings whose number of sides is larger than 5 or 6.

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

Rain-wind induced vibration of inclined stay cables -Part II: Mechanical modeling and parameter characterisation

  • Cosentino, Nicola;Flamand, Olivier;Ceccoli, Claudio
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.485-498
    • /
    • 2003
  • This paper presents a mechanical model of Rain-Wind Induced Vibration (RWIV) of stay cables. It is based on the physical interpretation of the phenomenon as given in Cosentino, et al. (2003, referred as Part I). The model takes into account all the main forces acting on cable, on the upper water rivulet (responsible of the excitation) and the cable-rivulet interaction. It is a simplified (cable cross-sectional and deterministic) representation of the actual (stochastic and three-dimensional) phenomenon. The cable is represented by its cross section and it is subjected to mechanical and aerodynamic (considering the rivulet influence) forces. The rivulet is supposed to oscillate along the cable circumference and it is subjected to inertial and gravity forces, pressure gradients and air-water-cable frictions. The model parameters are calibrated by fitting with experimental results. In order to validate the proposed model and its physical basis, different conditions (wind speed and direction, cable frequency, etc.) have been numerically investigated. The results, which are in very good agreement with the RWIV field observations, confirm the validity of the method and its engineering applicability (to evaluate the RWIV sensitivity of new stays or to retrofit the existing ones). Nevertheless, the practical use of the model probably requires a more accurate calibration of some parameters through new and specifically oriented wind tunnel tests.

Flutter performance of central-slotted plate at large angles of attack

  • Tang, Haojun;Li, Yongle;Chen, Xinzhong;Shum, K.M.;Liao, Haili
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.447-464
    • /
    • 2017
  • The flutter instability is one of the most important themes need to be carefully investigated in the design of long-span bridges. This study takes the central-slotted ideal thin flat plate as an object, and examines the characteristics of unsteady surface pressures of stationary and vibrating cross sections based on computational fluid dynamics (CFD) simulations. The flutter derivatives are extracted from the surface pressure distribution and the critical flutter wind speed of a long span suspension bridge is then calculated. The influences of angle of attack and the slot ratio on the flutter performance of central-slotted plate are investigated. The results show that the critical flutter wind speed reduces with increase in angle of attack. At lower angles of attack where the plate shows the characteristics of a streamlined cross-section, the existence of central slot can improve the critical flutter wind speed. On the other hand, at larger angles of attack, where the plate becomes a bluff body, the existence of central slot further reduces the flutter performance.

Research directions for maintenance criteria in Slab Track (콘크리트궤도 유지보수기준 정립을 위한 연구방향)

  • Eom, Jong-Woo;Lee, Myung-Suk;Kwon, Jin-Soo;Kim, Soo-Jung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.979-987
    • /
    • 2011
  • The Ballast Track has been widely applied in traditionally due to low initial cost and abundant elastic property. But the disadvantages of Ballast track are; labor-intensive and costly maintenance, weak in high-speed and heavy axial load, in additionally need wide cross section of tunnel and massive substructure in viaduct. Therefore, recent applications tend to more and more towards slab track such as Gyeungbu high speed rail and existing line. The slab track increased the stability, resistance and durability of track, and save maintenance cost compare to the Ballast Track. But the slab track have weakness of track elongation by sub-ballast differential settlement and that threat safety of train operation. Therefor the slab track need to prevent cracks in concrete ballast for insure the durability of slab track. In this paper, review main items and its expected effects of the slab track maintenance standards that control sub-ballast settlement and concrete ballast cracks.

  • PDF

In situ horizontal stress effect on plastic zone around circular underground openings excavated in elastic zones

  • Komurlu, Eren;Kesimal, Ayhan;Hasanpour, Rohala
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.783-799
    • /
    • 2015
  • In this study, effect of horizontal in situ stress on failure mechanism around underground openings excavated in isotropic, elastic rock zones is investigated. For estimating the plastic zone occurrence, an induced stress influence area approach (Bray Equations) was modified to define critical stress ratio according to the Mohr-Coulomb failure criterion. Results obtained from modified calculations were compared with results of some other analytical solutions for plastic zone thickness estimation and the numerical modelling (finite difference method software, FLAC2D) study. Plastic zone and its geometry around tunnels were analyzed for different in situ stress conditions. The modified equations gave similar results with those obtained from the other approaches. However, safer results were calculated using the modified equations for high in situ stress conditions and excessive ratio of horizontal to vertical in situ stresses. As the outcome of this study, the modified equations are suggested to use for estimating the plastic zone occurrence and its thickness around the tunnels with circular cross-section.

Pressure Drop and Refrigerant-Entrainment Characteristics of the Eliminators used in Absorption Chillers (흡수식 냉동기용 엘리미네이터의 압력손실 및 액적유입 특성)

  • 정시영;류진상;이상수;이정주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • The performance of two vertical-blade eliminators (V1, V2) and two horizontal-blade ones (H1, H2) for absorption chillers were tested in terms of pressure drop and refrigerant entrainment. The test was carried out using a wind tunnel with a cross section of 300 mm$\times$300 mm. The pressure drop of four eliminators tested was found to be in the rage of 1.0~2.7mm $H_2O$ at the face velocity of 2m/s. In the refrigerant entrainment test the vertical-blade eliminators showed much better performance than the horizontal-blade ones. The horizontal-blade eliminators showed satisfactory results at the air velocity of 2m/s but exceeded the limit value at 3 m/s. Since the cooling capacity of a machine is lowered by about 2.5% at the pressure drop of 1 m $H_2O$, more researches are required to reduce the pressure drop in the eliminator.

Aerodynamic Methods for Mitigating the Wind-Induced Motions on the Tall Buildings (고층건축물의 풍진동 저감을 위한 공기역학적 방법)

  • Ha Young-Cheol;Kim Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.431-434
    • /
    • 2002
  • The excessive wind-induced motion of tall buildings most frequently result from vortex shedding induced across-wind oscillations. This form of excitation is most pronounced far relatively flexible, lightweight and lightly damped structure, e.g. tall building. This paper discusses aerodynamic means for mitigating the across-wind vortex shedding induced in such situations. Emphasis is on the change of the building cross section to design the building with openings from side to side which provide pressure equalization and tend to reduced the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. Wind tunnel test have been carried out on the Kumoh National University of Technology using rigid models with twenty-four kinds of opening shapes. Form these results, the effective opening shape, size and location for building to reducing wind-induced vortex shedding and responses are pointed out.

  • PDF