• Title/Summary/Keyword: tunnel boring

Search Result 164, Processing Time 0.023 seconds

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.

Enhancing machine learning-based anomaly detection for TBM penetration rate with imbalanced data manipulation (불균형 데이터 처리를 통한 머신러닝 기반 TBM 굴진율 이상탐지 개선)

  • Kibeom Kwon;Byeonghyun Hwang;Hyeontae Park;Ju-Young Oh;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.519-532
    • /
    • 2024
  • Anomaly detection for the penetration rate of tunnel boring machines (TBMs) is crucial for effective risk management in TBM tunnel projects. However, previous machine learning models for predicting the penetration rate have struggled with imbalanced data between normal and abnormal penetration rates. This study aims to enhance the performance of machine learning-based anomaly detection for the penetration rate by utilizing a data augmentation technique to address this data imbalance. Initially, six input features were selected through correlation analysis. The lowest and highest 10% of the penetration rates were designated as abnormal classes, while the remaining penetration rates were categorized as a normal class. Two prediction models were developed, each trained on an original training set and an oversampled training set constructed using SMOTE (synthetic minority oversampling technique): an XGB (extreme gradient boosting) model and an XGB-SMOTE model. The prediction results showed that the XGB model performed poorly for the abnormal classes, despite performing well for the normal class. In contrast, the XGB-SMOTE model consistently exhibited superior performance across all classes. These findings can be attributed to the data augmentation for the abnormal penetration rates using SMOTE, which enhances the model's ability to learn patterns between geological and operational factors that contribute to abnormal penetration rates. Consequently, this study demonstrates the effectiveness of employing data augmentation to manage imbalanced data in anomaly detection for TBM penetration rates.

A probabilistic assessment of ground condition prediction ahead of TBM tunnels combining each geophysical prediction method (TBM 현장에서 막장전방 예측기법 결과의 확률론적 분석을 통한 지반상태 평가)

  • Lee, Kang-Hyun;Seo, Hyung-Joon;Park, Jeongjun;Park, Jinho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.257-272
    • /
    • 2016
  • It is usually not an easy task to counter-measure on time and appropriately when confronting with troubles in mechanized tunnelling job-sites because of the limitation of available spaces to perform those actions with the existence of disk cutter, cutter head, chamber and other various apparatus in Tunnel Boring Machine (TBM). So, it is important to predict the ground condition ahead of a tunnel face during tunnel excavation. Efforts have been made to utilize geophysical methods such as elastic wave survey, electromagnetic wave survey, electrical resistivity survey, etc for predicting the ground condition ahead of the TBM tunnel face. Each prediction method among these geophysical methods has its own advantage and disadvantage. Therefore, it might be needed to apply several geophysical methods rather than just one to predict the ground condition ahead of the tunnel face in the complex and/or mixed grounds since those methods will compensate among others. The problem is that each prediction method will give us different answer on the predicted ground condition; how to combine different solutions into a most reasonable and representative predicted value might be important. Therefore, in this study, we proposed a methodology how to systematically combine each prediction method utilizing probabilistic analysis as well as analytic hierarchy process. The proposed methods is applied to a virtual job site to confirm the applicability of the model to predict the ground condition ahead of the tunnel face in the mechanized tunnelling.

Evaluation of excavation damage zone during TBM excavation - A large deformation FE analysis study (TBM 굴착으로 인한 굴착손상영역 범위 추정 - 대변형 수치해석 연구)

  • Seheon Kim;Dohyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Analyzing the tunnel excavation behavior and its effect on the surrounding ground involves large deformation behavior. Therefore, in order to properly simulate the tunnel excavation process and rigorously investigate the actual effect of excavation on surrounding ground and tunnel structure large deformation analysis method is required. In this study, two major numerical approaches capable of considering large deformations behavior were applied to investigate the effect of tunnel boring machine excavation on the surrounding ground: coupled Eulerian-Lagrangian (CEL) and the automatic remeshing (AR) method. Relative performance of both approaches was evaluated through the ground response due to TBM excavation. The ground response will be quantified by estimating the range of the excavation damaged zone (EDZ). By comparing the results, the range of the EDZ will be suggested on the vertical and horizontal direction along the TBM excavation surface. Based on the computed results, it was found that the size of EDZ around the excavation surface and the tendencies was in good agreement among the two approaches. Numerical results clearly show that the size of the EDZ around the tunnel tends to be larger for rock with higher RMR rating. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional due to higher confinement stress around the excavation surface.

A study on the 3-dimensional behavior of shaft by the RBM reaming (RBM 굴착에 따른 수직구의 3차원적 거동 연구)

  • 조만섭;이석원;마상준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.717-724
    • /
    • 2002
  • To investigate the behavior of air-shaft and existing tunnel by excavating the small-diameter shaft into the existing tunnel, prototype air-shaft was constructed and analyzed in this study. Geotechnical characterization was conducted by boring and rock cores obtained were tested in the laboratory. Field monitoring including radial and tangential stresses and displacements was conducted with the 3-dimensional numerical analysis of prototype air-shaft. Results of field monitoring were compared with the numerical results. The results showed that maximum displacement of 2.11mm and maximum tangential stress of 54.0 kg/$\textrm{cm}^2$ were obtained during shaft excavation near the right shoulder of the existing tunnel. The comparison of these field measurements with 3-dimensional numerical analysis showed that much more higher stress was measured during excavation compared to the numerical results even though the trends of stress and displacement were similar.

  • PDF

Analysis of RBM한s Penetration Capacity for Upward reaming of Shaft (수직구의 상향굴착을 위한 RBM 굴진성능의 분석)

  • 이석원;조만섭;서경원;배규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.157-164
    • /
    • 2002
  • Based on the results of prototype air-shaft construction, penetration capacity of RBM(Raise Boring Machine) was analyzed and compared with TBM(Tunnel Boring Machine) performance in this study. Utilization, down time, net penetration rate and advance rate were evaluated and compared. By conducting the laboratory tests for rock properties with the analysis of penetration capacity, relation of penetration capacity and geotechnical parameters was studied. The results showed that much more higher value of utilization, however lower value of net penetration rate for RBM was obtained compared to those of TBM. In addition, as the strength of rock penetrated increased, higher value of net penetration rate was obtained contrarily to the results of TBM performance. Finally, new relationship between total hardness and net penetration rate for weak and weathered rock was derived from these results.

  • PDF

Three Dimensional Numerical Analysis on Rock Cutting Behavior of Disc Cutter Using Particle Flow Code (3차원 입자결합모델을 이용한 디스크 커터의 암석절삭에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.54-65
    • /
    • 2013
  • The LCM (Linear Cutting Machine) test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. In order to overcome this problem, lots of numerical studies have been performed. In this study, the PFC3D (Particle Flow Code in 3 Dimension) has been adopted for numerical analysis on optimum cutter spacing and failure aspects of Busan Tuff. The optimum cutting condition with s/p ratio of 16 and minimum specific energy of $14MJ/m^3$ was derived from numerical analyses. The cutter spacing for Busan Tuff had the good agreements with those of LCM test and numerical analysis by finite element method.

Review of Technical Issues for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM의 시공을 위한 기술적 고찰)

  • Jeong, Hoyoung;Zhang, Nan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.1-24
    • /
    • 2018
  • The use of TBM (tunnel boring machine) gradually increases in worldwide tunneling projects. TBM machine are often applied to more difficult and complex geological conditions in urban area, and many problems and difficulties have been reported due to these geological conditions. However, in Korea, there is a lack of research on difficult grounds so far. This paper discussed general aspects of investigation method, and problems of TBM tunneling in difficult grounds. Construction cases that passed through the difficult grounds in worldwide were analyzed and the typical difficult grounds were classified into 11 cases. For each case, the definition and general problems were summarized. Particularly, for mixed ground and boulder ground, and fault zone, which are frequent geological conditions in urban area with shallow depth, classification system, investigation methods and major considerations were discussed, and proposed the direction of future research. This paper is a basic study for the development of TBM construction technology in difficult ground, and it is expected that it will be useful for related research and construction of TBM in difficult ground in the future.

Prediction of replacement period of shield TBM disc cutter using SVM (SVM 기법을 이용한 쉴드 TBM 디스크 커터 교환 주기 예측)

  • La, You-Sung;Kim, Myung-In;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.641-656
    • /
    • 2019
  • In this study, a machine learning method was proposed to use in predicting optimal replacement period of shield TBM (Tunnel Boring Machine) disc cutter. To do this, a large dataset of ground condition, disc cutter replacement records and TBM excavation-related data, collected from a shield TBM tunnel site in Korea, was built and they were used to construct a disc cutter replacement period prediction model using a machine learning algorithm, SVM (Support Vector Machine) and to assess the performance of the model. The results showed that the performance of RBF (Radial Basis Function) SVM is the best among a total of three SVM classification functions (80% accuracy and 10% error rate on average). When compared between ground types, the more disc cutter replacement data existed, the better prediction results were obtained. From this results, it is expected that machine learning methods become very popularly used in practice in near future as more data is accumulated and the machine learning models continue to be fine-tuned.

A Study on the Stability of Shield TBM Thrust Jack in the Behavior of Operating Fluid According to Thrust Force (추력에 따른 동작 유체의 거동에 있어 쉴드 TBM 추진잭의 안정성에 대한 연구)

  • Lee, Hyun-seok;Na, Yeong-min;Jang, Hyun-su;Suk, Ik-hyun;Kang, Sin-hyun;Kim, Hun-tae;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • In this paper, the stability of the tunnel boring machine (TBM), used in tunnel excavation, according to the thrust force of the thrust jack was investigated. The existing hydraulic cylinder analysis method is fluid-structure interaction (FSI) analysis, where all of the flow setting and dynamic characteristics should be considered. Therefore, there is a need for a method to solve this problem simply and quickly. To facilitate this, the theoretical pressure in the hydraulic cylinder was calculated and compared with the analytical and experimental results. In the case of the analysis, the pressure generated inside the cylinder was analyzed statically, considering the operating characteristics of the shield TBM, and the stress and pressure were calculated. This method simplifies the analysis environment and shortens the analysis time compared to the existing analysis method. The obtained theoretical and analytical data were compared with the measured data during actual tunneling, and the analysis and experimental data showed a relative error of approximately 23.89%.