• Title/Summary/Keyword: tunnel boring

Search Result 164, Processing Time 0.024 seconds

Determination of a large shield TBM for a tunnel under the Han river in the Bundang railway (분당선 철도 한강 하저터널에서 대구경 쉴드장비 선정)

  • Kim, Yong-Il;Kim, Dong-Hyun;Cho, Sang-Kook
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.569-578
    • /
    • 2003
  • In this paper a determination of the optimal excavation method and machine type for a tunnel under the Han river between the Sungsoo-dong, Sungdong-Gu and the Chungdaw-dong, Kangnam-Gu in the Bundang railway. The geological investigation results show that some fractured zones exist locally under the northern boundary of the Han river bed, but the other regions consist mostly of hard rocks of good quality in the tunnel excavation level. Also, a hign water pressure of $5kgf/cm^2$ and a flash inflow of river water due to old boring holes are expected during tunnel excavation. A EPB shield TBM is selected as a optimal excavation machine for the Han river tunnel considering the geological and ,site conditions.

  • PDF

Nonlinear Seismic Performance Evaluation of an Operating TBM(Tunnel Boring Machine) Tunnel (공용 중인 TBM(Tunnel Boring Machine) 터널의 비선형 내진성능 평가 )

  • Byoung-Il Choi;Dong-Ha Lee;Jin-Woo Jung;Si-Hyun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.1-9
    • /
    • 2024
  • Recently, the TBM tunnel construction method has been in the spotlight as tunnel excavation under urban areas such as the Metropolitan Rapid Transit (GTX) has been actively carried out. Although the construction cost of the TBM tunnel is high, it is relatively free from noise and vibration compared to the NATM tunnel method, so it is well known to be a suitable construction method for application to the lower part of urban areas. In particular, when the stratum passes through the shallow section, it can have a great impact on existing upper structures and obstacles, so accurate numerical analysis considering various variables is required when designing the TBM tunnel. Unlike other tunnel construction methods, TBM tunnels build linings by assembling factory-made segments. Unlike NATM tunnels, segment lining has connections between segments, so how to the connection status between segments is reflected can have a significant impact on securing the reliability of analysis results. Therefore, in this paper, a segment joint model(Janssen Model) was applied to the lining for seismic analysis of the TBM tunnel, and the tunnel's behavioral characteristics were analyzed after numerical analysis using nonlinear models according to urban railway seismic design standards.

Influence of TBM operational parameters on optimized penetration rate in schistose rocks, a case study: Golab tunnel Lot-1, Iran

  • Eftekhari, A.;Aalianvari, A.;Rostami, J.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.239-248
    • /
    • 2018
  • TBM penetration rate is a function of intact rock properties, rock mass conditions and TBM operational parameters. Machine rate of penetrationcan be predicted by knowledge of the ground conditions and its effects on machine performance. The variation of TBM operational parameters such as penetration rate and thrust plays an important role in its performance. This study presents the results of the analysis on the TBM penetration rates in schistose rock types present along the alignment of Golab tunnel based on the analysis of a TBM performance database established for every stroke through different schistose rock types. The results of the analysis are compared to the results of some empirical and theoretical predictive models such as NTH and QTBM. Additional analysis was performed to find the optimum thrust and revolution per minute values for different schistose rock types.

한강 하저터널에서의 암반분류 및 평가사례

  • 박남서;이치문;김은섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06b
    • /
    • pp.165-193
    • /
    • 2003
  • The Han River tunnel connecting Yoido and Mapo was constructed as a part of the Seoul subway line No.5, which is 52 km long, to improve the traffic conditions of Seoul. It is constructed 15.6∼30m below the river floor. It Is the first under-river tunnel in Korea with the length of 1,288m. Geological conditions of the ground under the Han River were more complex and irregular than expected at the design stage, because there were several faults, fracture zones and slickensided joints coated with graphite. It was thus indispensable to estimate the ground condition of the tunnel face to apply proper excavation and reinforcement methods. Advance borings and face mappings were performed before excavation to improve constructional efficiency and excavation stability.

  • PDF

Stability Evaluation for a riverbed tunnel in the Han River at the Fault Zone Crossing (한강 단층대를 통과하는 하저터널의 안정성 확보에 관한 연구)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.225-231
    • /
    • 2001
  • When building tunnels beneath riverbeds where very large quantities of groundwater inflow exist, added to high water head the soil supporting conditions are very poor because the soil consists of sand and silt, etc. It is necessary to have grouting and mini pipe roof installed in the region for ground reinforcement to decrease permeability. According to this result of horizontal boring and laboratory soil testing, ground reinforcement was achieved by L.W grouting for range of 3.0 times the tunnel radius, to increase stability of the tunnel we used the ling-cut method, 0.8m for one step excavation, shotcrete with 25cm thick, steel lib with H-$125{\times}125$. and a temporary shotcrete invert 20cm thick was installed to prevent deformation of the tunnel.

  • PDF

Experimental and numerical investigation of fiber-reinforced slag-based geopolymer precast tunnel lining segment

  • Arass Omer Mawlod;Dillshad Khidhir Hamad Amen Bzeni
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • In this study, a new sustainable material was proposed to prepare precast tunnel lining segments (TLS), which were produced using a fiber-reinforced slag-based geopolymer composite. Slag was used as the geopolymer binder. In addition, polypropylene and carbon fibers were added to reinforce TLSs. TLSs were examined in terms of flexural performance, load-deflection response, ductility, toughness, crack characteristics, and tunnel boring machine (TBM) thrust force. Simultaneously, numerical simulation was performed using finite element analysis. The mechanical characteristics of the geopolymer composite with a fiber content of 1% were used. The results demonstrated that the flexural performance and load-deflection response of the precast TLSs were satisfactory. Furthermore, the numerical results were capable of predicting and realistically capturing the structural behavior of precast TLSs. Therefore, fiber-reinforced slag-based geopolymer composites can be applied as precast TLSs.

Several models for tunnel boring machine performance prediction based on machine learning

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Ibrahim, Hawkar Hashim;Ali, Hunar Farid Hama;Mohammed, Adil Hussein;Rashidi, Shima;Majeed, Mohammed Kamal
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.75-91
    • /
    • 2022
  • This paper aims to show how to use several Machine Learning (ML) methods to estimate the TBM penetration rate systematically (TBM-PR). To this end, 1125 datasets including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), punch slope index (PSI), distance between the planes of weakness (DPW), orientation of discontinuities (alpha angle-α), rock fracture class (RFC), and actual/measured TBM-PRs were established. To evaluate the ML methods' ability to perform, the 5-fold cross-validation was taken into consideration. Eventually, comparing the ML outcomes and the TBM monitoring data indicated that the ML methods have a very good potential ability in the prediction of TBM-PR. However, the long short-term memory model with a correlation coefficient of 0.9932 and a route mean square error of 2.68E-6 outperformed the remaining six ML algorithms. The backward selection method showed that PSI and RFC were more and less significant parameters on the TBM-PR compared to the others.

A Study on the Optimal Setting of Large Uncharged Hole Boring Machine for Reducing Blast-induced Vibration Using Deep Learning (터널 발파 진동 저감을 위한 대구경 무장약공 천공 장비의 최적 세팅조건 산정을 위한 딥러닝 적용에 관한 연구)

  • Kim, Min-Seong;Lee, Je-Kyum;Choi, Yo-Hyun;Kim, Seon-Hong;Jeong, Keon-Woong;Kim, Ki-Lim;Lee, Sean Seungwon
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.16-25
    • /
    • 2020
  • Multi-setting smart-investigation of the ground and large uncharged hole boring (MSP) method to reduce the blast-induced vibration in a tunnel excavation is carried out over 50m of long-distance boring in a horizontal direction and thus has been accompanied by deviations in boring alignment because of the heavy and one-directional rotation of the rod. Therefore, the deviation has been adjusted through the boring machine's variable setting rely on the previous construction records and expert's experience. However, the geological characteristics, machine conditions, and inexperienced workers have caused significant deviation from the target alignment. The excessive deviation from the boring target may cause a delay in the construction schedule and economic losses. A deep learning-based prediction model has been developed to discover an ideal initial setting of the MSP machine. Dropout, early stopping, pre-training techniques have been employed to prevent overfitting in the training phase and, significantly improved the prediction results. These results showed the high possibility of developing the model to suggest the boring machine's optimum initial setting. We expect that optimized setting guidelines can be further developed through the continuous addition of the data and the additional consideration of the other factors.

Full-scale testing and modeling of the mechanical behavior of shield TBM tunnel joints

  • Ding, Wen-Qi;Peng, Yi-Cheng;Yan, Zhi-Guo;Shen, Bi-Wei;Zhu, He-Hua;Wei, Xin-Xin
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.337-354
    • /
    • 2013
  • For shield TBM (Tunnel Boring Machine) tunnel lining, the segment joint is the most critical component for determining the mechanical response of the complete lining ring. To investigate the mechanical behavior of the segment joint in a water conveyance tunnel, which is different from the vehicle tunnel because of the external loads and the high internal water pressure during the tunnel's service life, full-scale joint tests were conducted. The main advantage of the joint tests over previous ones was the definiteness of the loads applied to the joints using a unique testing facility and the acquisition of the mechanical behavior of actual joints. Furthermore, based on the test results and the theoretical analysis, a mechanical model of segment joints has been proposed, which consists of all important influencing factors, including the elastic-plastic behavior of concrete, the pre-tightening force of the bolts and the deformations of all joint components, i.e., concrete blocks, bolts and cast iron panels. Finally, the proposed mechanical model of segment joints has been verified by the aforementioned full-scale joint tests.

A Case Study on Construction of Tunnel at Limestone Cavity Site (석회암공동 분포지역에서의 터널 시공사례)

  • Kim, Si-Kyeok;Kang, In-Seop;Kim, Yong-Ha;Yoon, Il-Byung;Moon, Hoon-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.66-75
    • /
    • 2006
  • As construction for road tunnel is increasing, various geotechnical conditions can be faced during the construction stage. Especially, if the tunnel is located in limestone area, many kinds of site investigations such as in-situ boring, electrical resistance survey, TSP(Tunnel Seismic Prediction) and etc., are conducted before and during the construction. By conducting these preliminary tests, location, size, and filling materials in limestone cavities can be approximately estimated. Once some cavities which can be harmful for tunnel safety are predicted, methods for ground reinforcement and tunnel excavation, corresponding those ground conditions, have to be established and verified by measurement data and numerical analysis. If necessary, invert lining should be also considered. In this paper, by studying some cases of tunnels constructed in limestone area, predicted problems during construction and rational countermeasures for those are presented.

  • PDF