• Title/Summary/Keyword: tunnel boring

Search Result 164, Processing Time 0.016 seconds

Development of Round Trip Occurrence Simulator Considering Tooth Wear of Drill Bit (시추비트의 마모도를 고려한 라운드 트립 발생 예측 시뮬레이터 개발)

  • Lee, Seung Soo;Kim, Kwang Yeom;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.480-492
    • /
    • 2013
  • After the introduction of geothermal power generation technology based on engineering reservoir creation that can be applied on non-volcanic region, industrial need for studies on the efficient and economic execution of costly deep-depth drilling work becomes manifest increasingly. However, since it is very difficult to predict duration and cost of boring work with acceptable reliability because of many uncertain events during the execution, efficient and organized work management for drilling is not easily achievable. Especially, the round trip that discretely occurs because of the abrasion of bit takes more time as the depth goes deeper and it has a great impact on the work performance. Therefore, a technology that can simulate the occurrence timing and depth of round trip in advance and therefore optimize them is essentially required. This study divided the abrasion state of bit into eight steps for simulation cases and developed a forecast algorithm, i.e., TOSA which can analyze the depth and timing of round trip occurrence. A methodology that can divide a unit section for simulation has been suggested; while the Bourgoyne and Young model has been used for the forecast of drilling rates and bit abrasion extent by section. Lastly, the designed algorithm has been systemized for the convenience of the user.

Preliminary study on a spoke-type EPB shield TBM by discrete element method (개별요소법을 활용한 스포크 타입 토압식 쉴드TBM의 예비 해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Choi, Soon-Wook;Park, Byungkwan;Kang, Tae-Ho;Sim, Jung Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1029-1044
    • /
    • 2017
  • The Discrete Element Method (DEM) is one of the useful numerical methods to analyze the behavior of the ground formation by computing the motion and interaction using particles. The DEM has not been applied in civil engineering but also a wide range of industrial fields, such as chemical engineering, pharmacy, material science, food engineering, etc. In this study, to review a performance of the spoke-type earth pressure balance (EPB) shield TBM (Tunnel Boring Machine), the commercial software based on the DEM technology was used. An analysis of the TBM during excavation was conducted according to two pre-defined excavation conditions with the different rotation speed of a cutterhead. During the analysis, the resistant torque at the face of the cutterhead, the compressive force at the cutterhead and shield surface, the muck discharge at the screw auger were measured and compared. Upon the two kinds of excavation conditions, the applicability of the DEM analysis was reviewed as a modelling method for the TBM.

A Study on Optimization for Location and type of Dam Considering the Characteristic of Large Fault (대규모 단층특성을 고려한 최적 댐위치 및 형식 선정)

  • Kim, Han-Jung;Lyu, Young-Gwon;Kim, Young-Geun;Lim, Hee-Dae
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.227-242
    • /
    • 2012
  • Youngju multipurpose dam is planned to minimizing the damage by flood and obtaining the water for industrial use in Nakdong river region. Faults in rock mass have strong influences on the behaviors of dam structure. Thus, it is very important to analyse for the characteristics of fault rocks in dam design. However, due to the limitation of geotechnical investigation in design stages, engineers have to carry out the additional geological survey including directional boring to find the distribution of faults and the engineering properties of faults for stability of dam. Especially, the selection of location of dam and type of dam considering fault zone must be analyzed through various experimental and numerical analysis. In this study, various geological survey and field tests were carried out to analyse the characteristics of the large fault zone through the complex dam is designed in foundation region. Also, the distribution of structural geology, the shape of faults and the mechanical properties of fault rock were studied for the reasonable design of the location and type of dam for long-term stability of the complex dam.

Seismic Risk Assessment on Buried Electric Power Tunnels with the Use of Liquefaction Hazard Map in Metropolitan Areas (액상화 재해지도를 이용한 수도권 전력구 매설지반의 지진시 위험도 평가)

  • Baek, Woohyun;Choi, Jaesoon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • In this study, the seismic risk has been evaluated by setting the bedrock acceleration to 0.154g which, was taking into consideration that the earthquake return period for the buried electric power tunnels in the metropolitan area to be 1,000 years. In this case, the risk assessment during the earthquake was carried out in three stages. In the first stage, the site classification was performed based on the site investigation data of the target area. Then, the LPI(Liquefaction Potential Index) was applied using the site amplification factor. After, candidates were selected using a hazard map. In the second stage, risk assessment analysis of seismic response are evaluated thoroughly after the recalculation of the LPI based on the site characteristics from the boring logs around the electric power area that are highly probable to be liquefied in the first stage. The third Stage visited the electric power tunnels that are highly probable of liquefaction in the second stage to compensate for the limitations based on the borehole data. At this time, the risk of liquefaction was finally evaluated based off of the reinforcement method used at the time of construction, the application of seismic design, and the condition of the site.