• Title/Summary/Keyword: tunicamycin

Search Result 54, Processing Time 0.023 seconds

Molecular Cloning and Characterization of a Muscle-Specific Lipase from the Bumblebee Bombus ignitus

  • Hu, Zhigang;Wang, Dong;Lu, Wei;Cui, Zheng;Jia, Jing-Ming;Yoon, Hyung-Joo;Sohn, Hung-Dae;Kim, Doh-Hoon;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.1
    • /
    • pp.143-151
    • /
    • 2008
  • A muscle-specific lipase gene of the bumblebee Bombus ignitus was cloned and characterized. This gene, which we named Bi-Lipase, consists of seven exons encoding 317 amino acid residues. Bi-Lipase possesses all the features of lipases, including GXSXG consensus motif and Ser-Asp-His catalytic triad. Expressed as a 37-kDa polypeptide in baculovirus-infected insect Sf9 cells, recombinant Bi-Lipase showed an optimal pH of 9.0 and exhibited its highest catalytic activity at $40^{\circ}C$. Furthermore, through the addition of tunicamycin to the recombinant virus-infected Sf9 cells, recombinant Bi-Lipase was found to be N-glycosylated. Northern and western blot analyses indicated that Bi-Lipase was expressed in the wing, thorax, and leg muscles. These results show that Bi-Lipase is a muscle-specific lipase, suggesting a possible role of Bi-Lipase in the utilization of lipids for muscular activity in B. ignitus.

cDNA Cloning and Expression of Human Rotavirus Outer Capsid Protein VP7 in Insect Cells

  • KANG, DU KYUNG;KI WAN KIM;PYEUNG-HYUN KIM;SEUNG YONG SEOUNG;YONG HEE KIM;ICK CHAN KWON;SEO YOUNG JEONG;EUI-YEOL CHOI;KYUNG MEE LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.369-377
    • /
    • 1998
  • Rotavirus is a major cause of severe gastroenteritis in young children and animals throughout the world. The VP7 of rotavirus is thought to induce the synthesis of neutralizing antibodies and to be responsible for determining viral serotypes. The cDNA coding for the VP7 capsid protein of human rotavirus, obtained from Korean patients (HRV-Y14), was cloned and its nucleotide sequence was determined. Comparative analysis of the nucleotide sequences between VP7 of Y14 and that of other foreign isolates showed $92.7~95.2\%$ homology to G1 serotypes (RV-4, KU, K8, WA), $74.2\%$ homolgy to G2 serotype HU-5, $76.4\%$ homology to G3 serotype SA-11, and $77.6\%$ homology to G4 serotype A01321. These data suggest that HRV-Y14 can be classified as a G1 serotype. cDNA coding for VP7 of HRV-YI4 was subcloned into the baculovirus vector and the VP7 glycoprotein was expressed in insect cells. The expressed proteins in Sf9 cell extract and tissue culture fluid were separated on SDS-PAGE, and Western blot analysis with monoclonal antibody raised against the synthetic peptide containing 21 amino acids within the VP7 conserved region was performed. The molecular weight of recombinant VP7 was estimated to be 36 kDa which is about the same size as the native VP7. Addition of tunicamycin in the culture media caused a reduction of the molecular weight of the recombinant VP7 indicating that the expressed protein was glycosylated.

  • PDF

miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na+/H+ exchanger-1 in the heart

  • Kim, Jin Ock;Kwon, Eun Jeong;Song, Dong Woo;Lee, Jong Sub;Kim, Do Han
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.208-213
    • /
    • 2016
  • Prolonged ER stress (ERS) can be associated with the induction of apoptotic cell death in various heart diseases. In this study, we searched for microRNAs affecting ERS in the heart using in silico and in vitro methods. We found that miR-185 directly targets the 3′-untranslated region of Na+/H+ exchanger-1 (NHE-1), a protein involved in ERS. Cardiomyocyte ERS-triggered apoptosis induced by 100 ng/ml tunicamycin (TM) or 1 μM thapsigargin (TG), ERS inducers, was significantly reduced by miR-185 overexpression. Protein expression of pro-apoptotic markers such as CCAAT/enhancer-binding protein homologous protein (CHOP) and cleaved-caspase-3 was also markedly reduced by miR-185 in a dose-dependent manner. Cariporide (20 μM), a pharmacological inhibitor of NHE-1, also attenuated ERS-induced apoptosis in cardiomyocytes and CHOP protein expression, suggesting that NHE-1 plays an important role in ERS-associated apoptosis in cardiomyocytes. Collectively, the present results demonstrate that miR-185 is involved in cardio-protection against ERS-mediated apoptotic cell death.

Intracellular Posttranslational Modification of Aspartyl Proteinase of Candida albicans and the Role of the Glycan Region of the Enzyme

  • 나병국;송철용
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.218-218
    • /
    • 2002
  • Using two drugs, tunicamycin and brefeldin A, which affect protein processing, we investigated the intracellular processing mechanism of secreted aspartyl proteinase 1 (SAPl) of Candide albicans. Three intracellular forms of SAPI were detected by immunoblotting using menoclonal antibody (MAb) CAPl. Their molecular weights were approximately 40, 41 and 45 kDa, respectively. The 41 kDa protein is a glycoprotein and may be the same as the extracellular form judging by its molecular mass. The 40 kDa protein was the unglycosylated form and its molecular mass coincided with deglycosylated SAPl and the 45 kDa protein was also the unglycosylated form. Neither the 40 and 45 kDa proteins were detected in the culture supernatant of C. albicans. These suggested that the 40 and 45 kDa proteins might be intracellular precursor forms of SAPI. These results show that SAPI is translated as a 45 kDa precusor form in the endoplasmic reticulum and the 45 kDa precursor farm undergoes proteolytic cleavage after translocation into the Golgi apparatus, generating the 40 kDa precursor form. This 40 kDa precursor is converted into a 41 kDa mature form through glycosylation in the Golgi apparatus. The mature form of the 41 kDa protein is sorted into secretary vesicles and finally released into the extracellular space through membrane fusion. When the glycan region of SAPl was digested with N-glycosidase F, both stability and activity of the enzyme decreased. These results indicate that the glycan attached to the enzyme may, at least in parti be related to enzyme stability and activity.

Analysis of Endoplasmic Reticulum (ER) Stress Induced during Somatic Cell Nuclear Transfer (SCNT) Process in Porcine SCNT Embryos

  • Lee, Hwa-Yeon;Bae, Hyo-Kyung;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • This study investigates the endoplasmic reticulum (ER) stress and subsequent apoptosis in duced during somatic cell nuclear transfer (SCNT) process of porcine SCNT embryos. Porcine SCNT and in vitro fertilization (IVF) embryos were sampled at 3 h and 20 h after SCNT or IVF and at the blastocyst stage for mRNA extraction. The x-box binding protein 1 (Xbp1) mRNA and the expressions of ER stress-associated genes were confirmed by RT-PCR or RT-qPCR. Apoptotic gene expression was analyzed by RT-PCR. Before commencing SCNT, somatic cells treated with tunicamycin (TM), an ER stress inducer, confirmed the splicing of Xbp1 mRNA and increased expressions of ER stress-associated genes. In all the embryonic stages, the SCNT embryos, when compared with the IVF embryos, showed slightly increased expression of spliced Xbp1 (Xbp1s) mRNA and significantly increased expression of ER stress-associated genes (p<0.05). In all stages, apoptotic gene expression was slightly higher in the SCNT embryos, but not significantly different from that of the IVF embryos except for the Bax/Bcl2L1 ratio in the 1-cell stage (p<0.05). The result of this study indicates that excessive ER stress can be induced by the SCNT process, which induce apoptosis of SCNT embryos.

Asn-Linked Glycosylation Contributes to Surface Expression and Voltage-Dependent Gating of Cav1.2 Ca2+ Channel

  • Park, Hyun-Jee;Min, Se-Hong;Won, Yu-Jin;Lee, Jung-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1371-1379
    • /
    • 2015
  • The Cav1.2 Ca2+ channel is essential for cardiac and smooth muscle contractility and many physiological functions. We mutated single, double, and quadruple sites of the four potential Asn (N)-glycosylation sites in the rabbit Cav1.2 into Gln (Q) to explore the effects of Nglycosylation. When a single mutant (N124Q, N299Q, N1359Q, or N1410Q) or Cav1.2/WT was expressed in Xenopus oocytes, the biophysical properties of single mutants were not significantly different from Cav1.2/WT. In comparison, the double mutant N124,299Q showed a positive shift in voltage-dependent gating. Furthermore, the quadruple mutant (QM; N124,299,1359,1410Q) showed a positive shift in voltage-dependent gating as well as a reduction of current. We tagged EGFP to the QM, double mutants, and Cav1.2/WT to chase the mechanisms underlying the reduced currents of QM. The surface fluorescence intensity of QM was weaker than that of Cav1.2/WT, suggesting that the reduced current of QM arises from its lower surface expression than Cav1.2/WT. Tunicamycin treatment of oocytes expressing Cav1.2/WT mimicked the effects of the quadruple mutations. These findings suggest that Nglycosylation contributes to the surface expression and voltage-dependent gating of Cav1.2.

Partial Purification of Lectin from Mycoparasitic Species of Trichoderma

  • Singh, Tanuja;Saikia, Ratul;Arora, Dilip K.
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.301-309
    • /
    • 2005
  • Trichoderma species/isolates exhibited varied degree of agglutination on sclerotial (Sc) and hyphal (Hy) surface of Macrophomina phaseolina. The agglutination efficiencies on Sc and Hy ranged from $11\;to\;57\%$. Isolates of T. harzianum (Th) and T. viride (Tv) showed greater agglutination on Sc ($23-57\%$) and Hy ($16-47\%$). Different enzymes (trypsin, pepsin, proteinase k, a-chymotrypsin, lyticase and glucosidase) and inhibitors (tunicamycin, cycloheximide, brefeldin A, sodium azide, dithiothreitol and SDS) reduced the agglutination potential of conidia of Th-23/98 and Tv-25/98; however, the extent of response varied greatly in different treatments. Different fractions of Th-23/98 and Tv-25/98 exhibited haemagglutinating reaction with human blood group A, B, AB and O. Haemagglutinating activity was inhibited by different sugars and glycoproteins tested. Crude haemagglutinating protein from outer cell wall protein fraction of Th-23/98 and Tv-25/98 were eluted on Sephadex G-100 column. Initially Th-23/98 and Tv-25/98 exhibited two peaks showing no agglutination activity; however, lectin activity was detected in the third peak. Similar to crude lectin, the purified lectin also exhibited haemagglutinating activity with different erythrocyte source. SDS-PAGE analysis of partially purified lectin revealed single band with an estimated molecular mass of 55 and 52 kDa in Th-23/98 and Tv-25/98, respectively. Trypsin, chymotrypsin and b-1,3-glucanase totally inhibited lectin activity. Similarly, various pH also affected the haemagglutinating activity of Th-23/98 and Tv-25/98. From the present observations, it can be concluded that the recognition/attachment of mycoparasite (T. harzianum and T. viride) to the host surface (M. phaseolina) may be most likely due to lectin-carbohydrate interaction.

Intracellular Posttranslational Modification of Aspartyl Proteinase of Candida albicans and the Role of the Glycan Region of the Enzyme

  • Na, Byung-Kuk;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.218-223
    • /
    • 2000
  • Using two drugs, tunicamycin and brefeldin A, which affect protein processing, we investigated the intracellular processing mechanism of secreted aspartyl proteinase 1 (SAPl) of Candide albicans. Three intracellular forms of SAPI were detected by immunoblotting using menoclonal antibody (MAb) CAPl. Their molecular weights were approximately 40, 41 and 45 kDa, respectively. The 41 kDa protein is a glycoprotein and may be the same as the extracellular form judging by its molecular mass. The 40 kDa protein was the unglycosylated form and its molecular mass coincided with deglycosylated SAPl and the 45 kDa protein was also the unglycosylated form. Neither the 40 and 45 kDa proteins were detected in the culture supernatant of C. albicans. These suggested that the 40 and 45 kDa proteins might be intracellular precursor forms of SAPI. These results show that SAPI is translated as a 45 kDa precusor form in the endoplasmic reticulum and the 45 kDa precursor farm undergoes proteolytic cleavage after translocation into the Golgi apparatus, generating the 40 kDa precursor form. This 40 kDa precursor is converted into a 41 kDa mature form through glycosylation in the Golgi apparatus. The mature form of the 41 kDa protein is sorted into secretary vesicles and finally released into the extracellular space through membrane fusion. When the glycan region of SAPl was digested with N-glycosidase F, both stability and activity of the enzyme decreased. These results indicate that the glycan attached to the enzyme may, at least in parti be related to enzyme stability and activity.

  • PDF

Fat Mass and Obesity-Associated (FTO) Stimulates Osteogenic Differentiation of C3H10T1/2 Cells by Inducing Mild Endoplasmic Reticulum Stress via a Positive Feedback Loop with p-AMPK

  • Son, Hyo-Eun;Min, Hyeon-Young;Kim, Eun-Jung;Jang, Won-Gu
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.58-65
    • /
    • 2020
  • Fat mass and obesity-associated (FTO) gene helps to regulate energy homeostasis in mammals by controlling energy expenditure. In addition, FTO functions in the regulation of obesity and adipogenic differentiation; however, a role in osteogenic differentiation is unknown. This study investigated the effects of FTO on osteogenic differentiation of C3H10T1/2 cells and the underlying mechanism. Expression of osteogenic and endoplasmic reticulum (ER) stress markers were characterized by reverse-transcriptase polymerase chain reaction and western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity. BMP2 treatment increased mRNA expression of osteogenic genes and FTO. Overexpression of FTO increased expression of the osteogenic genes distal-less homeobox5 (Dlx5) and runt-related transcription factor 2 (Runx2). Activation of adenosine monophosphate-activated protein kinase (AMPK) increased FTO expression, and there was a positive feedback loop between FTO and p-AMPK. p-AMPK and FTO induced mild ER stress; however, tunicamycin-induced severe ER stress suppressed FTO expression and AMPK activation. In summary, FTO induces osteogenic differentiation of C3H10T1/2 cells upon BMP2 treatment by inducing mild ER stress via a positive feedback loop with p-AMPK. FTO expression and AMPK activation induce mild ER stress. By contrast, severe ER stress inhibits osteogenic differentiation by suppressing FTO expression and AMPK activation.

Ethyl Acetate Fraction of Amomum villosum var. xanthioides Attenuates Hepatic Endoplasmic Reticulum Stress-Induced Non-Alcoholic Steatohepatitis via Enhancement of Antioxidant Activities (Amomum villosum var. xanthioides의 에틸아세테이트 분획물이 항산화 활성을 통한 간 소포체 스트레스 유발 비알코올성 지방간 저해)

  • Eun Jung Ahn;Su Young Shin;Seung Young Lee;Chang-Min Lee;Kyung-Min Choi;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.60-60
    • /
    • 2021
  • Non-alcoholic fatty liver disease (NAFLD), especially including non-alcoholic steatohepatitis (NASH) is one of the common diseases with 25% of prevalence globally, but there is no thera-peutic access available. Amomum villosum var. xanthioides (Wall. ex Baker) T.L.Wu & S.J.Chen (AX), which is a medicinal herb and traditionally used for treating digestive tract disorders in Asia countries. We aimed to examine pharmacological effects of ethyl acetate fraction of AX (AXEF) against ER stress-induced NASH mice model using C57/BL6J male mice by tunicamycin (TM, 2 mg/kg) injection focusing on the oxidative stress. Mice were orally administrated AXEF (12.5, 25, or 50 mg/kg), silymarin (50 mg/kg) or distilled water daily for 5 days, and outcomes for fatty liver, inflammation, and oxidative stress were measured in serum or liver tissue levels. AXEF drastically attenuated hepatic ER stress-induced NASH which were evidenced by decreases of li-pid droplet accumulations, serum liver enzymes, hepatic inflammations, and cell death signals in the hepatic tissue or serum levels. Interestingly, AXEF showed potent antioxidant effects by quenching of reactive oxidative stress and its final product of lipid peroxide in the hepatic tissue, specifically increase of metallothionein (MT). To confirm underlying actions of AXEF, we ob-served that AXEF increase MT1gene promoter activities in the physiological levels. Collectively, AXEF showed antioxidant properties on TM-induced ER stress of NASH by enhancement of MTs.

  • PDF