• Title/Summary/Keyword: tuned vibration control

Search Result 272, Processing Time 0.029 seconds

Optimal Design of Tuned Mass Damper Considering the Friction between the Moving Mass and the Rail (레일의 운동마찰력을 고려한 TMD 최적 설계)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Cho, Seung-Ho;Chung, Lan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.553-559
    • /
    • 2007
  • In this study, based on the results from the sinusoidal base excitation analyses of a single degree of freedom system with a tuned mass damper (TMD), it is verified that optimal friction force can improve the performance of a TMD like a linear viscous damper which has been usually used in general TMD. The magnitude of the optimal friction increases with increasing mass ratio of the TMD and decreases with increasing structural damping. Particularly, it is observed that the optimized friction force gives better control performance than the optimized viscous damping of the TMD. However, because the performance of the TMD considerably deteriorates when the friction force increases over the optimal value, it is required to keep the friction force from exceeding the optimal value.

Enhancing Robustness of Floor Vibration Control by Using Asymmetric Tuned Mass Damper (비대칭 동조질량감쇠기를 활용한 바닥진동제어의 강건성 향상 방안)

  • Ko, A Ra;Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.177-189
    • /
    • 2014
  • When floor vibration problems occur in existing buildings, TMD (tuned mass damper) can be a viable alternative to resolving the problem. Only when TMD has been exactly tuned to the natural frequency of the floor, it can control the vibration as intended in design. However, TMD gets inefficient in the situation where the natural frequency changes as a result of the uncontrollable variation of the floor mass weight. This physical phenomenon is often called as TMD-off-tuning. This study proposes asymmetric TMD for enhancing the robustness of floor vibration control against uncertain natural frequencies. The proposed TMD features two asymmetric linear springs such that the floor vibrational energy can be dissipated through both the translational and rotational motion. An easy-to-use graphical optimization method was developed in this study. The asymmetric TMD proposed outperformed in vibration control by 28% compared to that of conventional TMD. The robustness of asymmetric TMD of this study was two times higher than that of conventional TMD.

Development of ETMD(Electromagnetic Tuned Mass Damper) for Smart Control of Structure (구조물 스마트제어를 위한 ETMD(Electromagnetic Tuned Mass Damper)개발)

  • Jeon, Seung-Gon;Heo, Gwang-Hee;Lee, Chin-Ok;Lee, Jae-Hoon;Kim, Dae-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2022
  • The TMD has a simple structure than other vibration control devices and shows excellent control performance for the simple harmonic vibration generated in the structure. However, the vibration control range is narrower than other control devices, making it vulnerable to vibration cycles caused by unexpected external loads. The ETMD developed in this study consisted of Mass with electromagnets. Therefore when supplying a current, the magnetic field is formed to increase the friction force with the friction plate, thereby instantaneously controlling the behavior of the Mass. The experiment was conducted to compare the control performance of the control device by installing the ETMD developed for control performance evaluation in the center of the model simple beam bridge to forced excitation at 3.02 Hz where the maximum bending displacement occurs. As a result of the experiment, ETMD exhibited excellent control performance with a maximum bending displacement attenuation rate of 57.51%.

Positive Position Feedback Control of Plate Vibrations using Moment Pair Actuators (모멘트상 액추에이터가 적용된 평판의 PPF 능동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.527-535
    • /
    • 2012
  • This paper reports the active vibration control of plates using positive position feedback controller (PPF). The equations of motion of the plate under force and moment pairs were derived and the equations of PPF controllers were formulated. The effect of the parameters - gain and damping ratio - of the PPF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the PPF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies without changing the phase behavior. The increase of the damping ratio of the PPF controller leads to decrease the magnitude of the open loop transfer function and to modify its phase characteristics to be more stable. Two PPF controllers connected in parallel, Each PPF controller is tuned at the $1^{st}$ and $2^{nd}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 2 modes can be obtained.

  • PDF

Shaking table test of pounding tuned mass damper (PTMD) on a frame structure under earthquake excitation

  • Lin, Wei;Wang, Qiuzhang;Li, Jun;Chen, Shanghong;Qi, Ai
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.545-553
    • /
    • 2017
  • A pounding tuned mass damper (PTMD) can be considered as a passive device, which combines the merits of a traditional tuned mass damper (TMD) and a collision damper. A recent analytical study by the authors demonstrated that the PTMD base on the energy dissipation during impact is able to achieve better control effectiveness over the traditional TMD. In this paper, a PTMD prototype is manufactured and applied for seismic response reduction to examine its efficacy. A series of shaking table tests is conducted in a three-story building frame model under single-dimensional and two-dimensional broadband earthquake excitations with different excitation intensities. The ability of the PTMD to reduce the structural responses is experimentally investigated. The results show that the traditional TMD is sensitive to input excitations, while the PTMD mostly has improved control performance over the TMD to remarkably reduce both the peak and root-mean-square (RMS) structural responses under single-dimensional earthquake excitation. Unlike the TMD, the PTMD is found to have the merit of maintaining a stable performance when subjected to different earthquake loadings. In addition, it is also indicated that the performance of the PTMD can be enhanced by adjusting the initial gap value, and the control effectiveness improves with the increasing excitation intensity. Under two-dimensional earthquake inputs, the PTMD controls remain outperform the TMD controls; however, the oscillation of the added mass is observed during the test, which may induce torsional vibration modes of the structure, and hence, result in poor control performance especially after a strong earthquake period.

The Control of Vertical Vibration of Building Slabs using Tuned Mass Dampers (동조질량 감쇠기에 의한 건물 바닥판의 연직진동제어)

  • 이동근;김진구;안상경
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.103-114
    • /
    • 1998
  • The floors of building structures equipped with vibrating machines can be susceptible to large vibration as a result of resonance or beating. Such a vibration can be reduced efficiently by using tuned mass dampers. However, the effectiveness of the damper depends greatly on the location and the natural frequency of the damper. To determine the optimum damper location is especially important since the dynamic behavior of a building structure varies with the location of the input loading. To this end, it is intended to decide the location and natural frequency of tuned mass dampers for reducing vibration of both loaded floors and floors located nearby the loaded floors considering the location and frequency components of the loading. The Vector composition method and the super elements are used th obtain the responses in steady states, and the optimum damper location and natural frequencies were found with the given damper mass.

  • PDF

Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping

  • Niu, Huawei;Chen, Zhengqing;Hua, Xugang;Zhang, Wei
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.727-741
    • /
    • 2018
  • To mitigate vibrations, tuned mass dampers(TMD) are widely used for long span bridges or high-rise buildings. Due to some durability concerns, such as fluid degradation, oil leakage, etc., the alternative solutions, such as the non-contacted eddy current damping (ECD), are proposed for mechanical devices in small scales. In the present study, a new eddy current damping TMD (ECD-TMD) is proposed and developed for large scale civil infrastructure applications. Starting from parametric study on finite element analysis of the ECD-TMD, the new design is enhanced via using the permanent magnets to eliminate the power need and a combination of a copper plate and a steel plate to improve the energy dissipation efficiency. Additional special design includes installation of two permanent magnets at the same side above the copper plate to easily adjust the gap as well as the damping. In a case study, the proposed ECD-TMD is demonstrated in the application of a steel arch bridge to mitigate the wind-induced vibrations of the flexible hangers. After a brief introduction of the configuration and the installation process for the damper, the mitigation effects are measured for the ambient vibration and forced vibration scenarios. The results show that the damping ratios increase to 3% for the weak axis after the installation of the ECD-TMDs and the maximum vibration amplitudes can be reduced by 60%.

Serviceability-oriented analytical design of isolated liquid damper for the wind-induced vibration control of high-rise buildings

  • Zhipeng Zhao;Xiuyan Hu;Cong Liao;Na Hong;Yuanchen Tang
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 2024
  • The effectiveness of conventional tuned liquid dampers (TLDs) in controlling the wind-induced response of tall flexible structures has been indicated. However, the impaired control effect in the detuning condition or a considerably high mass cost of liquid may be incurred in ensuring the high-level serviceability. To provide an efficient TLD-based solution for wind-induced vibration control, this study proposes a serviceability-oriented optimal design method for isolated TLDs (ILDs) and derives analytical design formulae. The ILD is implemented by mounting the TLD on the linear isolators. Stochastic response analysis is performed for the ILD-equipped structure subjected to stochastic wind and white noise, and the results are considered to derive the closed-form responses. Correspondingly, an extensive parametric analysis is conducted to clarify a serviceability-oriented optimal design framework by incorporating the comfort demand. The obtained results show that the high-level serviceability demand can be satisfied by the ILD based on the proposed optimal design framework. Analytical design formulae can be preliminarily adopted to ensure the target serviceability demand while enhancing the structural displacement performance to increase the safety level. Compared with conventional TLD systems, the ILD exhibits higher effectiveness and a larger frequency bandwidth for wind-induced vibration control at a small mass ratio.

Nonlinear model based particle swarm optimization of PID shimmy damping control

  • Alaimo, Andrea;Milazzo, Alberto;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.211-224
    • /
    • 2016
  • The present study aims to investigate the shimmy stability behavior of a single wheeled nose landing gear system. The system is supposed to be equipped with an electromechanical actuator capable to control the shimmy vibrations. A Proportional-Integrative-Derivative (PID) controller, tuned by using the Particle Swarm Optimization (PSO) procedure, is here proposed to actively damp the shimmy vibration. Time-history results for some test cases are reported and commented. Stochastic analysis is last presented to assess the robustness of the control system.

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.