• Title/Summary/Keyword: tuned mass damping

Search Result 134, Processing Time 0.027 seconds

Fatigue Reliability Evaluation of Steel-Composite High-Speed Railway Bridge with Tuned Mass Damper (동조질량감쇠기를 장착한 강합성형 고속철도교의 피로신뢰성 평가)

  • Kang, Soo-Chang;Seo, Jeong-Kwan;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.1-10
    • /
    • 2005
  • This study proposes a fatigue reliability evaluation procedure for steel-composite high-speed railway bridge based on dynamic analysis and investigates the effectiveness of Tuned Mass Damper(TMD) in terms of the extension of fatigue life of the bridge. For the fatigue reliability evaluation, the limit state is determined using S-N curve and linear fatigue-damage accumulation. Dynamic analyses are peformed repeatedly to consider the uncertainties of train-velocity and damping ratio of the bridge. The distribution of random variables related to fatigue damage for the intended service life is then statistically estimated from analytical results. Finally, the fatigue reliability indices are obtained by means of the Advanced First-Order Second-Moment (AFOSM) method. Through numerical simulation of a steel-composite bridge of 40m span, the effectiveness of TMD on fatigue life of the bridge is examined and the results are presented.

Performance Evaluation of Semi-Active Tuned Mass Damper for Elastic and Inelastic Seismic Response Control (준능동 동조질량감쇠기의 탄성 및 비탄성 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Chung, Lan;Woo, Sung-Sik;Cho, Seung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.47-56
    • /
    • 2007
  • In this study, tile performance of a passive tuned mass damper (TMD) and a semi-active tuned mass damper (STMD) was evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for the damped structures with a passive TMD, which was optimally designed using the frequency and damping ratio presented by previous study, and with a STMD proposed in this study. The displacement spectra confirm that STMD provides much better control performance than passive md with less stroke. Also, the robustness or the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of which hysteresis was described by Bouc-Wen model and the results indicated that the performance of the passive TMD of which design parameters were optimized for a elastic structure considerably deteriorated when the hysteretic portion or the structural responses increased, while the STMD showed about 15-40% more response reduction than the TMD.

Estimation of active multiple tuned mass dampers for asymmetric structures

  • Li, Chunxiang;Xiong, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.505-530
    • /
    • 2008
  • This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel;Otavio Augusto Peter de Souza
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.647-661
    • /
    • 2023
  • It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

Parameter Optimization for Vibration Control of a Cantilever Beam Using Piezoelectric Shunt Damping System (압전분기회로를 이용한 보 구조물의 진동제어 파라미터 최적화 해석)

  • Lim K.C.;Cho D.S.;Park W.C.;Kee C.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.918-921
    • /
    • 2005
  • According to the mechanical-electrical coupling characteristics and the electrical Impedance property of resistor-inductor-capacitor(RLC) series resonant circuit, the mechanical impedance analysis of a bimorph piezoceramic patch shunted with a series RLC resonant circuit is conducted. The displacement transfer function of a cantilever beam bonded with a piezoelectric shunt damping module is deduced in the case of single mode vibration of the beam. By the use of vibration damping theory of tuned mass damper system, the parameter optimization of piezoelectric shunt damping system is performed. The optimal resonant state of the shunting circuit can be obtained when the resister and conductor are optimally adjusted. Test results show that the vibration control effect as well improved with optimized piezoelectric shunt system.

  • PDF

Motion-based design of TMD for vibrating footbridges under uncertainty conditions

  • Jimenez-Alonso, Javier F.;Saez, Andres
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.727-740
    • /
    • 2018
  • Tuned mass dampers (TMDs) are passive damping devices widely employed to mitigate the pedestrian-induced vibrations on footbridges. The TMD design must ensure an adequate performance during the overall life-cycle of the structure. Although the TMD is initially adjusted to match the natural frequency of the vibration mode which needs to be controlled, its design must further take into account the change of the modal parameters of the footbridge due to the modification of the operational and environmental conditions. For this purpose, a motion-based design optimization method is proposed and implemented herein, aimed at ensuring the adequate behavior of footbridges under uncertainty conditions. The uncertainty associated with the variation of such modal parameters is simulated by a probabilistic approach based on the results of previous research reported in literature. The pedestrian action is modelled according to the recommendations of the Synpex guidelines. A comparison among the TMD parameters obtained considering different design criteria, design requirements and uncertainty levels is performed. To illustrate the proposed approach, a benchmark footbridge is considered. Results show both which is the most adequate design criterion to control the pedestrian-induced vibrations on the footbridge and the influence of the design requirements and the uncertainty level in the final TMD design.

Nonlinear Tuned Mass Damper for self-excited oscillations

  • Gattulli, Vincenzo;Di Fabio, Franco;Luongo, Angelo
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.251-264
    • /
    • 2004
  • The effects of a class of nonlinear Tuned Mass Dampers on the aeroelastic behavior of SDOF systems are investigated. Unlike classical linear TMDs, nonlinear constitutive laws of the internal damping acting between the primary oscillator and the TMD are considered, while the elastic properties are keept linear. The perturbative Multiple Scale Method is applied to derive a set of bifurcation equations in the amplitude and phase and a parametric analysis is performed to describe the postcritical scenario of the system. Both cubic- and van der Pol-type dampings are considered and the dependence of the limit-cycle amplitudes on the system parameters is studied. These new results, compared with the previously obtained bifurcation scenario of a SDOF aeroelastic oscillator equipped with a linear TMD, show a detrimental effect on the maximum limit-cycle amplitude reduction of the nonlinear TMD. However, the analyses evidence that in the parameter region away from the perfect tuning condition the nonlinear connection can be used to tune the system with an enhancement of the limit-cycle amplitude reduction.

Efficient Vibration Control Approach of Two Identical Adjacent Structures (동일한 인접구조물의 효율적 진동제어방안)

  • Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.56-63
    • /
    • 2014
  • This study proposes a new control approach for efficient vibration suppression of two identical adjacent structures. The conventional control approach of two adjacent structures is to interconnect the two structures with passive, semi-active or active control devices. However, when the two adjacent structures are identical to each other, their dynamical behaviors such as frequency and damping properties are also the same. In this case, the interconnected control devices cannot exhibit the dissipative control forces on the both structures as expected since the relative displacements and velocities of the devices become close to zero. In other words, the interconnection method does not work for the twin structures as enough as expected. In order to solve this problem, we propose several new control approaches to effectively and efficiently reduce the identically-fluctuating responses of the adjacent structures with minimum control efforts. In order to demonstrate the proposed control systems, the proposed several control systems are optimally designed and their control performances are compared with that of the conventional optimal control system where each TMD(tuned mass damper) is installed in each structure for independent control purpose. The simulated results show that one of the proposed control systems(System 04) is able to guarantee enhanced control performance compared with the conventional system.

Vibration Control of Lamp posts On Bridge using Tuned Mass Dampers (동조질량감쇠기를 이용한 교량 가로등의 진동제어)

  • Ha, Dong-Ho;Kim, Yong-Gyu;Lee, Chang-Hyung;Yoo, Moon-Sig;Park, Dong-Hyun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.432-439
    • /
    • 2006
  • Long span, high-rise bridges are rapidly increasing nowadays. Because of high flexibility, such bridges are easily excited by winds, vehicles, and pedestrians. The vibration of bridge induces a vibration of lamp post and pillar. Wind loads can also excite lamp posts and traffic signal structures directly. Because of low damping, such vibrations of lamp post are frequently amplified and come to collapse or lamp failure. In addition, such vibration makes the maintenance cycle shorter and increases social cost. We conducted vibration tests and identified the dynamic characteristics of two types lamp posts, and proposed tuned mass dampers to control the vibrations. Established models of the lamp posts present the dynamic characteristics of the structures very well and they are used to design TMDs. In this study, we suggested a new-type TMD model that is small, simple, economic and effective to suppress the vibration of lamp posts. The efficiency of TMD was examined by numerically and is to be examined experimentally.

  • PDF

Control of buildings using single and multiple tuned liquid column dampers

  • Chang, C.C.;Hsu, C.T.;Swei, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.77-93
    • /
    • 1998
  • Some design formulas and design procedures for single and multiple tuned liquid column dampers (TLCDs) are proposed in this study. Previous studies show that if the properties of the TLCD system are properly selected then the TLCD could be as effective as the traditional tuned mass dampers. In addition, the TLCD system offers advantages such as flexibility in terms of installation, little maintenance required, and potentials for multiple usage, etc., which are incomparable by other mechanical types of dampers. In this paper, a set of optimal properties such as length and head loss of a TLCD system are derived under the assumption that the building vibrates in a dominate mode and is subjected to Gaussian white noise excitation. A design procedure for a single TLCD system will be illustrated and discussed. Due to the nonlinearity in the damping term, the TLCD system is sensitive to the loading intensity. This loading sensitivity could limit the application range of the TLCD system. It will be shown in this paper that such a nonlinear effect can be reduced by using multiple TLCDs. As a demonstrative example, the control effects on a flexible building modeled as a single degree-of-freedom system subjected to white noise excitation will be analyzed and discussed using single or multiple TLCDs.