• Title/Summary/Keyword: tuned mass dampers (TMD)

Search Result 86, Processing Time 0.028 seconds

Experimental study on the effect of EC-TMD on the vibration control of plant structure of PSPPs

  • Zhong, Tengfei;Feng, Xin;Zhang, Yu;Zhou, Jing
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.457-473
    • /
    • 2022
  • A high-frequency vibration control method is proposed in this paper for Pumped Storage Power Plants (PSPPs) using Eddy Current Tuned Mass Damper (EC-TMD), based on which a new type of EC-TMD device is designed. The eddy current damper parameters are optimized by numerical simulation. On this basis, physical simulation model tests are conducted to compare and study the effect of structural performance with and without damping, different control strategies, and different arrangement positions of TMD. The test results show that EC-TMD can effectively reduce the control effect under high-frequency vibration of the plant structure, and after the additional damping device forms EC-TMD, the energy dissipation is further realized due to the intervention of eddy current damping, and the control effect is subsequently improved. The Multi-Tuned Mass Damper (MTMD) control strategy broadens the tuning band to improve the robustness of the system, and the vibration advantage is more obvious. Also, some suggestions are made for the placement of the dampers to promote their application.

Multiple wall dampers for multi-mode vibration control of building structures under earthquake excitation

  • Rahman, Mohammad Sabbir;Chang, Seongkyu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.537-549
    • /
    • 2017
  • One of the main concerns of civil engineering researchers is developing or modifying an energy dissipation system that can effectively control structural vibrations, and keep the structural response within tolerable limits during unpredictable events like earthquakes, wind and any kind of thrust load. This article proposes a new type of mass damper system for controlling wideband earthquake vibrations, called Multiple Wall Dampers (MWD). The basic principle of the Tuned Mass Damper (TMD) was used to design the proposed wall damper system. This passive energy dissipation system does not require additional mass for the damping system because the boundary wall mass of the building was used as a damper mass. The multi-mode approach was applied to determine the location and design parameters of the dampers. The dampers were installed based on the maximum amplitude of modes. To optimize the damper parameters, the multi-objective optimization Response Surface Methodology was used, with frequency response and maximum displacement as the objective functions. The obtained structural responses under different earthquake forces demonstrated that the MWD is one of the most capable tools for reducing the responses of multi-storied buildings, and this system can be practically used for new and existing building structures.

Performance of TMDs on nonlinear structures subjected to near-fault earthquakes

  • Domizio, Martin;Ambrosini, Daniel;Curadelli, Oscar
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.725-742
    • /
    • 2015
  • Tuned mass dampers (TMD) are devices employed in vibration control since the beginning of the twentieth century. However, their implementation for controlling the seismic response in civil structures is more recent. While the efficiency of TMD on structures under far-field earthquakes has been demonstrated, the convenience of its employment against near-fault earthquakes is still under discussion. In this context, the study of this type of device is raised, not as an alternative to the seismic isolation, which is clearly a better choice for new buildings, but rather as an improvement in the structural safety of existing buildings. Seismic records with an impulsive character have been registered in the vicinity of faults that cause seismic events. In this paper, the ability of TMD to control the response of structures that experience inelastic deformations and eventually reach collapse subject to the action of such earthquakes is studied. The results of a series of nonlinear dynamic analyses are presented. These analyses are performed on a numerical model of a structure under the action of near-fault earthquakes. The structure analyzed in this study is a steel frame which behaves as a single degree of freedom (SDOF) system. TMD with different mass values are added on the numerical model of the structure, and the TMD performance is evaluated by comparing the response of the structure with and without the control device.

Optimization and application of multiple tuned mass dampers in the vibration control of pedestrian bridges

  • Lu, Zheng;Chen, Xiaoyi;Li, Xiaowei;Li, Peizhen
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • An effective design approach for Multiple Tuned Mass Dampers (MTMDs) in pedestrian bridges was proposed by utilizing the transfer function to obtain each TMD's optimum stiffness and damping. A systematic simulation of pedestrian excitations was described. The motion equation of a typical MTMD system attached to a Multi-degree-of-freedom (MDOF) system was presented, and the transfer function from the input pedestrian excitations to the output acceleration responses was defined. By solving the minimum norm of the transfer function, the parameters of the MTMD which resulted in the minimum overall responses can be obtained. Two applications of lightly damped pedestrian bridges attached with MTMD showed that MTMDs designed through this method can significantly reduce the structural responses when subjected to pedestrian excitations, and the vibration control effects were better than the MTMD when it was considered as being composed of equal number and mass ratios of TMDs designed by classical Den Hartog method.

An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers

  • Lu, Zheng;Wang, Dianchao;Masri, Sami F.;Lu, Xilin
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.93-115
    • /
    • 2016
  • A particle tuned mass damper (PTMD) system is the combination of a traditional tuned mass damper (TMD) and a particle damper (PD). This paper presents the results of an experimental and analytical study of the damping performance of a PTMD attached to the top of a benchmark model under wind load excitation. The length ratio of the test model is 1:200. The vibration reduction laws of the system were explored by changing some system parameters (including the particle material, total auxiliary mass ratio, the mass ratio between container and particles, the suspending length, and wind velocity). An appropriate analytical solution based on the concept of an equivalent single-unit impact damper is presented. Comparison between the experimental and analytical results shows that, with the proper use of the equivalent method, reasonably accurate estimates of the dynamic response of a primary system under wind load excitation can be obtained. The experimental and simulation results show the robustness of the new damper and indicate that the damping performance can be improved by controlling the particle density, increasing the amount of particles, and aggravating the impact of particles etc.

The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.425-434
    • /
    • 2019
  • The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.

A novel hybrid control of M-TMD energy configuration for composite buildings

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;T. Chen
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.475-483
    • /
    • 2023
  • In this paper, a new energy-efficient semi-active hybrid bulk damper is developed that is cost-effective for use in structural applications. In this work, the possibility of active and semi-active component configurations combined with suitable control algorithms, especially vibration control methods, is explored. The equations of motion for a container bridge equipped with an MDOF Mass Tuned Damper (M-TMD) system are established, and the combination of excitation, adhesion, and control effects are performed by a proprietary package and commercial custom submodel software. Systematic methods for the synthesis of structural components and active systems have been used in many applications because of the main interest in designing efficient devices and high-performance structural systems. A rational strategy can be established by properly controlling the master injection frequency parameter. Simulation results show that the multiscale model approach is achieved and meets accuracy with high computational efficiency. The M-TMD system can significantly improve the overall response of constrained structures by modestly reducing the critical stress amplitude of the frame. This design can be believed to build affordable, safe, environmentally friendly, resilient, sustainable infrastructure and transportation.

Dynamic characteristics of multiple inerter-based dampers for suppressing harmonically forced oscillations

  • Chen, Huating;Jia, Shaomin;He, Xuefeng
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.747-762
    • /
    • 2019
  • Based on the ball-screw mechanism, a tuned viscous mass damper (TVMD) has been proposed, which has functions of amplifying physical mass of the system and frequency tuning. Considering the sensitivity of a single TVMD's effectiveness to frequency mistuning like that of the conventional tuned mass damper (TMD) and according to the concept of the conventional multiple tuned mass damper (MTMD), in the present paper, multiple tuned mass viscous dampers (MTVMD) consisting of many tuned mass dampers (TVMD) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTVMD is manufactured by keeping the stiffness and damping constant and varying the mass associated with the lead of the ball-screw type inerter element in the damper. The structure is represented by its mode-generalized system in a specific vibration mode controlled using the mode reduced-order method. Modal properties and fundamental characteristics of the MTVMD-structure system are investigated analytically with the parameters, i.e., the frequency band, the average damping ratio, the tuning frequency ratio, the total number of TVMD and the total mass ratio. It is found that there exists an optimum set of the parameters that makes the frequency response curve of the structure flattened with smaller amplitudes in a wider input frequency range. The effectiveness and robustness of the MTVMD are also discussed in comparison with those of the usual single TVMD (STVMD) and the results shows that the MTVMD is more effective and robust with the same level of total mass.

Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads

  • Zhou, Xuanyi;Lin, Yongjian;Gu, Ming
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.363-388
    • /
    • 2015
  • For controlling the vibration of specific building structure with large span, a practical method for the design of MTMD was developed according to the characteristics of structures subjected to wind loads. Based on the model of analyzing wind-induced response of large-span structure with MTMD, the optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads was established, in which the applicable requirements for strength and fatigue life of TMD spring were considered. According to the method, the controlled modes and placements of TMDs in MTMD were determined through the quantitative analysis on modal contribution to the wind-induced dynamic response of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated.

The Properties of Optimal Passive Tuned Mass Dampers (최적 수동 동조질량감쇠기의 특성)

  • 노필성;강병두;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.165-172
    • /
    • 1996
  • Recently, the response of a high-rise building to external dynamic force created by wind and earthquake has received much attention. This response is dependent on wind intensity, surrounding environment, building size, shape, mass, stiffness and amount of energy dissipation available in the system. The study has been done on these parameters. Attempts have been made to increase the damping in building system and thereby reduce structural response. These attempts have centered on adding an energy-dissipative system(passive tuned mass damper; passive TMD) to the building system and increasing the overall effective damping. In this paper the optimum condition of passive TMD will be derived with respect to random excitation and the properties of the optimum condition will have been studied.

  • PDF