• Title/Summary/Keyword: tumour

Search Result 324, Processing Time 0.021 seconds

Clinical development of photodynamic agents and therapeutic applications

  • Baskaran, Rengarajan;Lee, Junghan;Yang, Su-Geun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.303-310
    • /
    • 2018
  • Background: Photodynamic therapy (PDT) is photo-treatment of malignant or benign diseases using photosensitizing agents, light, and oxygen which generates cytotoxic reactive oxygens and induces tumour regressions. Several photodynamic treatments have been extensively studied and the photosensitizers (PS) are key to their biological efficacy, while laser and oxygen allow to appropriate and flexible delivery for treatment of diseases. Introduction: In presence of oxygen and the specific light triggering, PS is activated from its ground state into an excited singlet state, generates reactive oxygen species (ROS) and induces apoptosis of cancer tissues. Those PS can be divided by its specific efficiency of ROS generation, absorption wavelength and chemical structure. Main body: Up to dates, several PS were approved for clinical applications or under clinical trials. $Photofrin^{(R)}$ is the first clinically approved photosensitizer for the treatment of cancer. The second generation of PS, Porfimer sodium ($Photofrin^{(R)}$), Temoporfin ($Foscan^{(R)}$), Motexafin lutetium, Palladium bacteriopheophorbide, $Purlytin^{(R)}$, Verteporfin ($Visudyne{(R)}$), Talaporfin ($Laserphyrin^{(R)}$) are clinically approved or under-clinical trials. Now, third generation of PS, which can dramatically improve cancer-targeting efficiency by chemical modification, nano-delivery system or antibody conjugation, are extensively studied for clinical development. Conclusion: Here, we discuss up-to-date information on FDA-approved photodynamic agents, the clinical benefits of these agents. However, PDT is still dearth for the treatment of diseases in specifically deep tissue cancer. Next generation PS will be addressed in the future for PDT. We also provide clinical unmet need for the design of new photosensitizers.

β-Carotene prevents weaning-induced intestinal inflammation by modulating gut microbiota in piglets

  • Li, Ruonan;Li, Lingqian;Hong, Pan;Lang, Wuying;Hui, Junnan;Yang, Yu;Zheng, Xin
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1221-1234
    • /
    • 2021
  • Objective: Weaning is an important stage in the life of young mammals, which is associated with intestinal inflammation, gut microbiota disorders, and even death. β-Carotene displays anti-inflammatory and antioxidant activities, which can prevent the development of inflammatory diseases. However, whether β-carotene can affect intestinal microbiota remains unclear. Methods: Twenty-four piglets were distributed into four groups: the normal suckling group (Con), the weaning group (WG), the weaning+β-carotene (40 mg/kg) group (LCBC), and the weaning+β-carotene (80 mg/kg) group (HCBC). The serum, jejunum, colon, and faeces were collected separately from each group. The effects of β-carotene on the phenotype, overall structure, and composition of gut microbiota were assessed in weaning piglets. Results: The results showed that β-carotene improved the growth performance, intestinal morphology and relieved inflammation. Furthermore, β-carotene significantly decreased the species from phyla Bacteroidetes and the genus Prevotella, and Blautia, and increased the species from the phyla Firmicutes and the genera p-75-a5, and Parabacteroides compared to the WG group. Spearman's correlation analysis showed that Prevotella and Blautia were positively correlated, and Parabacteroides and Synergistes were negatively correlated with the levels of interleukin-1β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α), while p-75-a5 showed negative correlation with IL-6 in serum samples from piglets. Conclusion: These findings indicate that β-carotene could alleviate weaning-induced intestinal inflammation by modulating gut microbiota in piglets. Prevotella may be a potential target of β-carotene in alleviating the weaning-induced intestinal inflammation in piglets.

HPV-18 E7 Interacts with Elk-1 Leading to Elevation of the Transcriptional Activity of Elk-1 in Cervical Cancer

  • Go, Sung-Ho;Rho, Seung Bae;Yang, Dong-Wha;Kim, Boh-Ram;Lee, Chang Hoon;Lee, Seung-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.593-602
    • /
    • 2022
  • The human papillomavirus (HPV)-18 E7 (E7) oncoprotein is a major transforming protein that is thought to be involved in the development of cervical cancer. It is well-known that E7 stimulates tumour development by inactivating pRb. However, this alone cannot explain the various characteristics acquired by HPV infection. Therefore, we examined other molecules that could help explain the acquired cancer properties during E7-induced cancer development. Using the yeast two-hybrid (Y2H) method, we found that the Elk-1 factor, which is crucial for cell proliferation, invasion, cell survival, anti-apoptotic activity, and cancer development, binds to the E7. By determining which part of E7 binds to which domain of Elk-1 using the Y2H method, it was found that CR2 and CR3 of the E7 and parts 1-206, including the ETS-DNA domain of Elk-1, interact with each other. As a result of their interaction, the transcriptional activity of Elk-1 was increased, thereby increasing the expression of target genes EGR-1, c-fos, and E2F. Additionally, the colony forming assay revealed that overexpression of Elk-1 and E7 promotes C33A cell proliferation. We expect that the discovery of a novel E7 function as an Elk-1 activator could help explain whether the E7 has novel oncogenic activities in addition to p53 inactivation. We also expect that it will offer new methods for developing improved strategies for cervical cancer treatment.

Synergistic interaction between acetaminophen and L-carnosine improved neuropathic pain via NF-κB pathway and antioxidant properties in chronic constriction injury model

  • Owoyele, Bamidele Victor;Bakare, Ahmed Olalekan;Olaseinde, Olutayo Folajimi;Ochu, Mohammed Jelil;Yusuff, Akorede Munirdeen;Ekebafe, Favour;Fogabi, Oluwadamilare Lanre;Roi, Treister
    • The Korean Journal of Pain
    • /
    • v.35 no.3
    • /
    • pp.271-279
    • /
    • 2022
  • Background: Inflammation is known to underlie the pathogenesis in neuropathic pain. This study investigated the anti-inflammatory and neuroprotective mechanisms involved in antinociceptive effects of co-administration of acetaminophen and L-carnosine in chronic constriction injury (CCI)-induced peripheral neuropathy in male Wistar rats. Methods: Fifty-six male Wistar rats were randomly divided into seven experimental groups (n = 8) treated with normal saline/acetaminophen/acetaminophen + L-carnosine. CCI was used to induce neuropathic pain in rats. Hyperalgesia and allodynia were assessed using hotplate and von Frey tests, respectively. Investigation of spinal proinflammatory cytokines and antioxidant system were carried out after twenty-one days of treatment. Results: The results showed that the co-administration of acetaminophen and L-carnosine significantly (P < 0.001) increased the paw withdrawal threshold to thermal and mechanical stimuli in ligated rats compared to the ligated naïve group. There was a significant (P < 0.001) decrease in the levels of nuclear factor kappa light chain enhancer B cell inhibitor, calcium ion, interleukin-1-beta, and tumour necrotic factor-alpha in the spinal cord of the group coadministered with acetaminophen and L-carnosine compared to the ligated control group. Co-administration with acetaminophen and L-carnosine increased the antioxidant enzymatic activities and reduced the lipid peroxidation in the spinal cord. Conclusions: Co-administration of acetaminophen and L-carnosine has anti-inflammatory effects as a mechanism that mediate its antinociceptive effects in CCI-induced peripheral neuropathy in Wistar rat.

The Experimental Study on Anti-inflammatory Effects of Eungapbang (EGB) (은갑방(銀甲方)이 염증 관련 cytokines의 유전자 발현과 생성량에 미치는 영향)

  • Lee, Bo-Ra;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.3
    • /
    • pp.83-98
    • /
    • 2009
  • Purpose: This study was performed to evaluate the anti-inflammatory effect of Eungapbang extract (EGB). Methods: To evaluate the anti-inflammatory effects of EGB, we nourished RAW 264.7 cell lines in the laboratory dish. Next, inflammatory cytokine concentrations were analyzed. Then, sera were prepared from blood after lipopolysaccharide (LPS) injection in chemically induced mouse models of intestinal inflammation, and Interleukin-1${\beta}$ (IL-1${\beta}$), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-${\alpha}$) were measured using ELISA kits. Results: 1. EGB significantly suppressed the expression levels of IL-1${\beta}$ and NOS-II genes at 100, 50 and 10 ${\mu}g/m{\ell}$ concentrations, and IL-6, TNF-${\alpha}$ and COX-2 mRNAs at 100 and 50 ${\mu}g/m{\ell}$ concentrations. 2. EGB significantly reduced the production level of IL-1${\beta}$ and TNF-${\alpha}$ at 100${\mu}g/m{\ell}$ concentrations, and IL-6 at 100 and 50 ${\mu}g/m{\ell}$ concentrations. 3. EGB significantly decreased the production level of IL-1${\beta}$ and IL-6 in sera of acute inflammation induced mice. 4. EGB could suppress the expression level of IL-1${\beta}$ and IL-6 mRNA in spleen tissues in acute inflammation induced mice. Conclusion: On the basis of the above results, it is confirmed that the anti-inflammatory effects of EGB were recognized. Therefore, EGB is recommended as promising therapy for treatment of such ailments as pelvic inflammatory disease.

A comparative study on the hepatoprotective effect of selenium-nanoparticles and dates flesh extract on carbon tetrachloride induced liver damage in albino rats

  • Ghada Nady Ouais;Doaa Mohamad Hassan
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.538-551
    • /
    • 2023
  • Exposure to environmental pollutants such as carbon tetrachloride (CCL4) causes liver damage. This study aimed to compare the ameliorative activity of the dates flesh extract (DFE) and selenium-nanoparticles (SeNPs) on CCL4-induced hepatotoxicity and if DFE could be a useful alternative supplement. Twenty-four male albino rats were enrolled and randomly divided into four equal groups (6 rats in each group): control group received only basal diet with no medications. Group II received CCL4 in a dose of 0.5 mg/kg intraperitoneal injection twice weekly for four weeks. Group III rats were pretreated with SeNPs in a dose of 2.5 mg/kg once a day orally three times/wk for four weeks alone then combined with the previously described dose of CCL4 for another four weeks. Group IV rats were pretreated with DFE in a dose of 8 ml of the aqueous extract/kg/d orally for four weeks alone then combined with the previously described dose of CCL4 for another four weeks. The liver damage was assessed by estimation of plasma concentration of albumin and enzymes activities of alanine aminotransferase and tissue genes expression. Liver oxidation levels were assessed by measuring the tissue concentration of the malondialdehyde, superoxide dismutase, and the total glutathione. Additionally, inflammatory mediators tumour necrosis factor--α and interleukin-6 were estimated. Detecting the liver's cellular structural damage was done by histopathological and immunohistochemical examination. This study suggests that CCL4-induced liver damage in rats can be protected by administration whether the costly SeNPs or the economical DFE.

Silymarin attenuates escitalopram (cipralex) induced pancreatic injury in adult male albino rats: a biochemical, histological, and immunohistochemical approach

  • Rasha Mamdouh Salama;Sara Gamal Tayel
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.122-136
    • /
    • 2023
  • Depression is a prevalent global problem since ages, predominately treated with SSRI. Cipralex, is an antidepressant of the SSRIs class used as a remedy for mood, depression and anxiety. Silymarin (SIL), a natural free radical scavenging, has an antioxidant and anti-inflammatory properties. This hypothesis evaluates, for the first time, the role of cipralex on the structure of the endocrine and exocrine components of the pancreas and assess the beneficial effects of SIL on these changes. Forty-five rats were divided into control, cipralex, and cipralex plus SIL groups. During sacrifice, all rats and pancreases were weighed and the ratio of pancreatic weight (PW) to rat weight (RW) was calculated, blood samples were collected to estimate fasting glucose, insulin and amylase levels, the specimens were prepared for histological, immunohistochemical (inducible nitric oxide synthase [iNOS], tumour necrosis factor-alpha [TNF-α], caspase 3, proliferating cell nuclear antigen [PCNA], and anti-insulin antibody), and morphometrical studies. Cipralex group exhibited marked destruction of the pancreatic architecture of the exocrine and endocrine parts, with a dense collagen fiber deposition. Also, there is highly significant decrease (P<0.001) of PW/RT ratio, insulin, and amylase levels, the number and diameter of islets of Langerhans, the number of PCNA positive immunoreactive cells, and the number of insulin positive β-cells. Furthermore, a highly significant increase of glucose level, iNOS, TNF-α, and caspase-3 positive immunoreactive cells in the islets of Langerhans and acinar cells were observed. SIL improves the pancreatic histological architecture, weight loss, biochemical, and immunohistochemical analyses. Administering SIL is advantageous in managing cipralex induced pancreatic injury via its anti-inflammatory, antioxidant, and anti-apoptotic qualities.

Clinical outcome of perioperative airway and ventilatory management in patients undergoing surgery for oral cavity cancer: a prospective observational study

  • Souvik Mukherjee;Anuj Jain;Seema S;Vaishali Waindeskar
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.50 no.3
    • /
    • pp.146-152
    • /
    • 2024
  • Objectives: This prospective observational study aimed to assess the clinical outcomes of perioperative airway and ventilatory management in patients undergoing surgery for oral cavity cancer. The study described the frequencies and types of procedures for securing the airway and the duration and types of postoperative ventilatory support. We compared the findings with those of the TRACHY study. Patients and Methods: One hundred patients undergoing oral cavity oncological surgeries were included. Airway assessment included inter-incisor gap, Mallampati class, neck movements, and radiological features. Surgical parameters, postoperative ventilatory support, and complications were documented. Results: The buccal mucosa was the most common cancer site (48.0%), and direct laryngoscopy was deemed difficult in 58.0% of patients. Awake fibreoptic intubation or elective tracheostomy was required in 43.0% of cases. Thirty-three patients were extubated on the table, and 34 patients were successfully managed with a delayed extubation strategy. In comparison with the TRACHY study, variations were observed in demographic parameters, tumour characteristics, and surgical interventions. Our mean TRACHY score was 1.38, and only five patients had a score ≥4. Prophylactic tracheostomy was performed in 2.0% of cases, in contrast to the TRACHY study in which 42.0% of patients underwent the procedure. Conclusion: The study emphasizes the challenges in airway management for oral cavity cancer surgery. While prophylactic tracheostomy may be necessary in specific cases, individualized approaches, including delayed extubation, are preferrable to maximize safety. Our findings contribute to better understanding and managing perioperative challenges in oral cancer patients and highlight the need for personalized strategies. Scoring systems like TRACHY should not be accepted as universally applicable.

An In Silico Drug Repositioning Strategy to Identify Specific STAT-3 Inhibitors for Breast Cancer

  • Sruthy Sathish
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.123-131
    • /
    • 2023
  • Breast cancer continues to pose a substantial worldwide health challenge, thereby requiring the development of innovative strategies to discover new therapeutic interventions. Signal Transducer and Activator of Transcription 3 (STAT-3) has been identified as a significant factor in the development of several types of cancer, including breast cancer. This is primarily attributed to its diverse functions in promoting tumour formation and conferring resistance to therapeutic interventions. This study presents an in silico drug repositioning approach that focuses on identifying specific inhibitors of STAT-3 for the purpose of treating breast cancer. We initially examined the structural and functional attributes of STAT-3, thereby elucidating its crucial involvement in cellular signalling cascades. A comprehensive virtual screening was performed on a diverse collection of drugs that have been approved by the FDA from zinc15 database. Various computational techniques, including molecular docking, cross docking, and cDFT analysis, were utilised in order to prioritise potential candidates. This prioritisation was based on their predicted binding energies and outer molecular orbital reactivity. The findings of our study have unveiled a Dihydroergotamine and Paritaprevir that have been approved by the FDA and exhibit considerable promise as selective inhibitors of STAT-3. In conclusion, the utilisation of our in silico drug repositioning approach presents a prompt and economically efficient method for the identification of potential compounds that warrant subsequent experimental validation as selective STAT-3 inhibitors in the context of breast cancer. The present study highlights the considerable potential of employing computational strategies to expedite the drug discovery process. Moreover, it provides valuable insights into novel avenues for targeted therapeutic interventions in the context of breast cancer treatment.

Anti-Inflammatory and Antioxidant Effect of Astaxanthin Derived from Microalgae (미세조류 유래 astaxanthin의 항염증 및 항산화 효과)

  • Kwak, Tae-Won;Cha, Ji-Young;Lee, Chul-Won;Kim, Young-Min;Yoo, Byung-Hong;Kim, Sung-Gu;Kim, Jong-Myoung;Park, Seong-Ha;An, Won-Gun
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1377-1384
    • /
    • 2011
  • Astaxanthin (ATX) is a red-orange carotenoid pigment that occurs naturally in a wide variety of living organisms. In this study we investigated the inhibitory effects of ATX on the induction of inducible nitric oxide synthase (iNOS), nitric oxide (NO), proinflammatory cytokines, nuclear factor-kappa B(NF-${\kappa}B$) and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In addition, we tested the superoxide radical scavenging activity of ATX by scavenging assay. iNOS and NF-${\kappa}B$ expressions were determined by immunoblot analysis. Interleukin (IL)-6 and tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$) were assayed by ELISA. NO production was monitored by measuring the amount of nitrite. ROS was examined by using the 2', 7'-Dichlorodihydrofluorescin diacetate (DCFH-DA) method. At a concentration of 100 ${\mu}M$, ATX inhibited the expression level of LPS-induced NF-${\kappa}B$, as well as the production of LPS-induced NO and proinflammatory cytokines (IL-6 and TNF-${\alpha}$), by suppressing iNOS expression. In particular, the maximal inhibition rate of IL-6 and TNF-${\alpha}$ production by ATX (100 ${\mu}M$) was 65.2----- and 21.2-----, respectively. In addition, ATX inhibited the LPS-induced transcriptional activity of NF-${\kappa}B$, and this was associated with suppressing the translocations of NF-${\kappa}B$ from the cytosol to the nucleus. Moreover, at various concentrations (25-100 ${\mu}M$), ATX inhibited the intracellular level of ROS. At a concentration of 5 mg/ml, the superoxide radical scavenging activity of ATX was 1.33 times higher than ${\alpha}$-tocopherol of the same concentration. These results showed that ATX inhibited the expression of iNOS and the production of NO and proinflammatory cytokines resulting from ROS production and NF-${\kappa}B$ activation in macrophages. Furthermore, ATX was found to be more effective in superoxide radical scavenging activities compared to ${\alpha}$-tocopherol. These findings are expected to strengthen the position of ATX as anti-inflammatory medicine and antioxidant.