• Title/Summary/Keyword: tumorigenic

Search Result 126, Processing Time 0.025 seconds

miR-335 Targets SIAH2 and Confers Sensitivity to Anti-Cancer Drugs by Increasing the Expression of HDAC3

  • Kim, Youngmi;Kim, Hyuna;Park, Deokbum;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.562-572
    • /
    • 2015
  • We previously reported the role of histone deacetylase 3 (HDAC3) in response to anti-cancer drugs. The decreased expression of HDAC3 in anti-cancer drug-resistant cancer cell line is responsible for the resistance to anti-cancer drugs. In this study, we investigated molecular mechanisms associated with regulation of HDAC3 expression. MG132, an inhibitor of proteasomal degradation, induced the expression of HDAC3 in various anti-cancer drug-resistant cancer cell lines. Ubiquitination of HDAC3 was observed in various anti-cancer drug-resistant cancer cell lines. HDAC3 showed an interaction with SIAH2, an ubiquitin E3 ligase, that has increased expression in various anti-cancer drug-resistant cancer cell lines. miRNA array analysis showed the decreased expression of miR-335 in these cells. Targetscan analysis predicted the binding of miR-335 to the 3'-UTR of SIAH2. miR-335-mediated increased sensitivity to anti-cancer drugs was associated with its effect on HDAC3 and SIAH2 expression. miR-335 exerted apoptotic effects and inhibited ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines. miR-335 negatively regulated the invasion, migration, and growth rate of cancer cells. The mouse xenograft model showed that miR-335 negatively regulated the tumorigenic potential of cancer cells. The down-regulation of SIAH2 conferred sensitivity to anti-cancer drugs. The results of the study indicated that the miR-335/SIAH2/HDAC3 axis regulates the response to anti-cancer drugs.

Detection of Ebstein-Barr Virus DNA and Bcl-2 Protein in Laryngeal Squamous Cell Carcinoma (후두암종에서 Ebstein-Barr 바이러스 DNA와 Bcl-2 단백의 검색)

  • Lee Sang-Sook;Park Nam-Jo;Park June-Sik
    • Korean Journal of Head & Neck Oncology
    • /
    • v.16 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Objectives: Epstein-Barr virus(EBV) is a B-lymphotrophic virus with a tumorigenic potential. EBV infection has been recognized as the main cause of nasopharyngeal carcinoma and Burkitt's lymphoma. Bcl-2 protein expression is known to be up-regulated by the EBV-latency associated antigen latent membrane protein(LMP). The aim of this study was to determine the incidence of EBV in squamous cell carcinomas of the larynx and the relationship between the presence of EBV and bcl-2 expression. Patients and Methods: From January 1994 to December 1977, 35 patients with primary squamous cell carcinoma of the larynx were studied. EBV genome DNA was surveyed by polymerase chain reaction(PCR) assay and then compared the results of in situ hybridization(ISH) for EBER1 using digoxigenin-tailed oligonucleotide probe. The expression of bcl-2 protein was studied by immunohistochemistry(IHC) using bcl-2 monoclonal antibody. Results: By PCR, EBV genome was detected in 22 of 35(62.9%) squamous cell carcinomas of the larynx. Nineteen of 35 cases(54.3%) showed a positive nuclear staining for EBER1 in tumor cells by ISH. Three cases showed positivity in inflammatory cells by ISH and one of them showed a positive staining of both tumor cells and inflammatory cells. Eighteen of 32 specimens(62.5%) were positive for bcl-2 protein. There was no significant correlations between the presence of EBV DNA and bcl-2 expression. Conclusions: It could be concluded that high incidence of EBV in the laryngeal cancer tissue may indicate a probable role of EBV in the development of laryngeal carcinoma.

  • PDF

Inhibition of Cellular Proliferation by p53 dependent Apoptosis and G2M Cell Cycle Arrest of Saussurea lappa CLARKE in AGS Gastric Cancer Cell Lines

  • Jeong Han Su;Kim Dong Jo;Heo Geum Jeong;Nam Chang Gyu;Go Seong Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1186-1191
    • /
    • 2004
  • The root of Saussurea lappa includes sesquiterpene lactones such as costunolide and dehydrocostus lactone, and has been shown to be anti-tumorigenic with being used in traditional medicinal therapy in the Eastern Asia. However, the molecular basis of the effects of Saussurea lappa on fate of gastric carcinoma, which incur very frequently in the area, has not been well identified. In this study, the cytostatic effects of Saussurea lappa were examined using gastric AGS cancer cells. Cell viability was dramatically reduced by Saussurea lappa, in a dose-dependent manner. As time passed after its treatment, apoptotic population was increased and clearly showed G2-arrest. Being consistent, its treatment resulted in maintaining of G1 and S-phase cyclins D1, E, and A even until a significant apoptotic population was observed, for example, at 24h after treatment. However, G2/M phase cyclin B1 was reduced even at 12 h after treatment. In addition, its treatment increased expression of p53, p21/sup Wafl / cyclin dependent kinase inhibitor (CKI), and Bax, resulted in cleavages of procaspase 3 and poly ADP-ribose polymerase(PARP), indicating that such G2 arrest- and apoptosis-related molecules are involved. Therefore, these suggest that extracts of Saussurea lappa root may be a safer and effective reagent to deal with gastric cancers either by traditional herbal therapy or combinational therapy with conventional chemotherapy.

Quantitative and Qualitative Extrapolation of Carcinogenesis Between Species

  • Gold Lois Swirsky;Manley Neela B.;Ames Bruce N.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.431-438
    • /
    • 1994
  • As currently conducted, standard rodent bioassays do not provide sufficient information to assess carcinogenic risk to humans at doses thousands of times below the maximum tolerated dose. Recent analyses indicate that measures of carcinogenic potency from these tests are restricted to a narrow range about the maximum tolerated dose and that information on shape of the dose-response is limited in experiments with only two doses and a control. Extrapolation from high to low doses should be based on an understanding of the mechanisms of carcinogenesis. We have postulated that administration of the maximum tolerated dose can increase mitogenesis which, in turn. increases rates of mutagenesis and, thus, carcinogenesis. The animal data are consistent with this mechanism, because about half of all chemicals tested are indeed rodent carcinogens, and about 40% of the positives are not detectably mutagenic. Thus, at low doses where cell killing does not occur, the hazards to humans of rodent carcinogens may be much lower than commonly assumed. In contrast, for high-dose exposures in the workplace, assessment of hazard requires comparatively little extrapolation. Nevertheless. permitted workplace exposures are sometimes close to the tumorigenic dose-rate in animal tests. Regulatory policy to prevent human cancer has primarily addressed synthetic chemicals, yet similar proportions of natural chemicals and synthetic chemicals test positive in rodent studies as expected from an understanding of toxicological defenses, and the vast proportion of human exposures are to natural chemicals. Thus, human exposures to rodent carcinogens are common. The natural chemicals are the control to evaluate regulatory strategies, and the possible hazards from synthetic chemicals should be compared to the possible hazards from natural chemicals. Qualitative extrapolation of the carcinogenic response between species has been investigated by comparing two closely related species: rats and mice. Overall predictive values provide moderate confidence in interspecies extrapolation; however, knowing that a chemical is positive at any site in one species gives only about a 50% chance that it will be positive at the same site in the other species.

  • PDF

Establishment of Highly Tumorigenic Human Gastric Carcinoma Cell Lines from Xenograft Tumors in Mice

  • Song, Kyung-A;Park, Jihyun;Kim, Ha-Jung;Kang, Myung Soo;Kim, Sun Young
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.238-250
    • /
    • 2017
  • Patient's primary tumor-derived tumor cell lines likely represent ideal tools for human tumor biology in vitro and in vivo. Here, we describe eight human gastric carcinoma cell lines derived from established tumors in vivo upon subcutaneous transplantation of primary gastric carcinoma specimens in BALB/c nude mice. These xenografted gastric tumor cell lines (GTX) displayed close similarity with primary gastric tumor tissues in their in vivo growth pattern and genomic alterations. GTX-085 cells were resistant to cisplatin, while GTX-087 was the most sensitive cell line. GTX-085 was the only cell line showing a metastatic potential. Epithelial cell adhesion molecule (EPCAM) expression was especially strong in all tissue samples, as well as in cell cultures. GTX-139, the largest tumor graft obtained after injection, displayed distinct expression of CD44v6, fibroblast growth factor receptor 2 (FGFR2), and prominin 1 (PROM1, also known as CD133). In summary, we established eight xenograft gastric cancer cell lines from gastric cancer patient tissues, with their histological and molecular features consistent with those of the primary tumors. The established GTX cell lines will enable future studies of their responses to various treatments for gastric cancer.

TRRAP stimulates the tumorigenic potential of ovarian cancer stem cells

  • Kang, Kyung Taek;Kwon, Yang Woo;Kim, Dae Kyoung;Lee, Su In;Kim, Ki-Hyung;Suh, Dong-Soo;Kim, Jae Ho
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.514-519
    • /
    • 2018
  • Ovarian cancer is the most fatal gynecological malignancy in women and identification of new therapeutic targets is essential for the continued development of therapy for ovarian cancer. TRRAP (transformation/transcription domain-associated protein) is an adaptor protein and a component of histone acetyltransferase complex. The present study was undertaken to investigate the roles played by TRRAP in the proliferation and tumorigenicity of ovarian cancer stem cells. TRRAP expression was found to be up-regulated in the sphere cultures of A2780 ovarian cancer cells. Knockdown of TRRAP significantly decreased cell proliferation and the number of A2780 spheroids. In addition, TRRAP knockdown induced cell cycle arrest and increased apoptotic percentages of A2780 sphere cells. Notably, the mRNA levels of stemness-associated markers, that is, OCT4, SOX2, and NANOG, were suppressed in TRRAP-silenced A2780 sphere cells. In addition, TRRAP overexpression increased the mRNA level of NANOG and the transcriptional activity of NANOG promoter in these cells. Furthermore, TRRAP knockdown significantly reduced tumor growth in a murine xenograft transplantation model. Taken together, the findings of the present study suggest that TRRAP plays an important role in the regulation of the proliferation and stemness of ovarian cancer stem cells.

Preventive Effects of a Major Component of Green Tea, Epigallocathechin-3-Gallate, on Hepatitis-B Virus DNA Replication

  • Karamese, Murat;Aydogdu, Sabiha;Karamese, Selina Aksak;Altoparlak, Ulku;Gundogdu, Cemal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4199-4202
    • /
    • 2015
  • Background: Hepatitis B virus infection is one of the major world health problems. Epigallocatechin-3 gallate is the major component of the polyphenolic fraction of green tea and it has an anti-viral, anti-mutagenic, anti-tumorigenic, anti-angiogenic, anti-proliferative, and/or pro-apoptotic effects on mammalian cells. In this study, our aim was to investigate the inhibition of HBV replication by epigallocatechin-3 gallate in the Hep3B2.1-7 hepatocellular carcinoma cell line. Materials and Methods: HBV-replicating Hep3B2.1-7 cells were used to investigate the preventive effects of epigallocatechin-3 gallate on HBV DNA replication. The expression levels of HBsAg and HBeAg were determined using ELISA. Quantitative real-time-PCR was applied for the determination of the expression level of HBV DNA. Results: Cytotoxicity of epigallocathechin-3-gallate was not observed in the hepatic carcinoma cell line when the dose was lower than $100{\mu}M$. The ELISA method demonstrated that epigallocatechin-3 gallate have strong effects on HBsAg and HBeAg levels. Also it was detected by real-time PCR that epigallocatechin-3 gallate could prevent HBV DNA replication. Conclusions: The obtained data pointed out that although the exact mechanism of HBV DNA replication and related diseases remains unclear, epigallocatechin-3 gallate has a potential as an effective anti-HBV agent with low toxicity.

Expression Pattern and Prognostic Significance of Claudin 1, 4 and 7 in Pancreatic Cancer

  • Alikanoglu, Arsenal Sezgin;Gunduz, Seyda;Demirpence, Ozlem;Suren, Dinc;Gunduz, Umut Riza;Sezer, Cem;Yildiz, Mustafa;Yildirim, Mustafa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4387-4392
    • /
    • 2015
  • Background: Tight junctions (TJs) organise paracellular permeability and they have an important role in epithelial and endothelial cell polarity and permanence of barrier function. It has been demonstrated that the Claudin family constitutes an important component of them. In this study, we assessed expression patterns of of Claudin1, 4 and 7 and whether they have any relation with prognosis in patients with pancreatic cancer. Materials and Methods: Expression patterns of Claudin 1,4 and 7 were examined by immunohistochemistry in 25 patients with a histopathological diagnosis of pancreatic cancer using a semiquantitative scoring of the extent and intensity of staining. After grouping the staining scores as low (final score 0-2) and high (final score 3-9) the relation between expression of Claudin 1,4 and 7 and survival was evaluated. Results: There was no significant relation between expression of Claudin 1,4 and 7 and gender and stage. No statistically significant relation was found between Claudin 1 and 4 expression and survival whereas a statistically significant relation was found between decrease in Claudin 7 expression and decrease in survival. Conclusions: Claudins have important functions other than their popular function known as adhesion. Supporting this hypothesis, we found a statistically significant relationship between increased Claudin 7 expression and increased survival time, and this suggests that Claudin 7 may exert different tumorigenic effects in pancreatic cancer other than its well-known adhesion effect.

miR-19a Promotes Cell Growth and Tumorigenesis through Targeting SOCS1 in Gastric Cancer

  • Qin, Shuang;Ai, Fang;Ji, Wei-Fang;Rao, Wang;Zhang, He-Cheng;Yao, Wen-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.835-840
    • /
    • 2013
  • Accumulating evidence has shown that microRNAs are involved in cancer development and progression. However, it remains unknown about the potential role of miR-19a in the pathogenesis of gastric cancer. Here, we report that suppressor of cytokine signaling 1 (SOCS1) is a novel target of miR-19a in gastric cancer cells and that miR-19a expression is inversely correlated with SOCS1 expression in gastric cancer cells and a subset of gastric cancer tissues. Ectopic expression of miR-19a dramatically promoted proliferation and tumorigenicity of gastric cancer cells both in vitro and in vivo. Moreover, we showed that silencing of SOCS1 promoted cell growth and colony formation resembling that of miR-19a overexpression, whereas re-introduction of SOCS1 (without the 3'-UTR) attenuated the pro-tumorigenic functions. Taken together, our findings suggest that the SOCS1 gene is a direct target of miR-19a, which functions as an oncogenic miRNA in gastric cancer by repressing the expression of tumor suppressor SOCS1.

Isolation of Mesenchymal Stem-like Cells from a Pituitary Adenoma Specimen

  • Shim, Jin-Kyoung;Kang, Seok-Gu;Lee, Ji-Hyun;Chang, Jong Hee;Hong, Yong-Kil
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Some of the pituitary adenomas are invasive and spread into neighboring tissues. In previous studies, the invasion of pituitary adenomas is thought to be associated with epithelial-mesenchymal transition (EMT). In addition to that, we thought that mesenchymal stem cells (MSCs) exist in relevant microenvironment in pituitary adenoma. However, it has been little known about the existence of MSCs from pituitary adenoma. So we investigated whether mesenchymal stem-like cells (MSLCs) can be isolated from the pituitary adenoma specimen. We isolated and cultured candidate MSLCs from the fresh pituitary adenoma specimen with the same protocols used in culturing bone marrow derived MSCs (BM-MSCs). The cultured candidate MSLCs were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with MSCs. Candidate MSLCs were exposed to mesenchymal differentiation conditions to determine the mesenchymal differentiation potential of these cells. To evaluate the tumorigenesis of candidate MSLCs from pituitary adenoma, we implanted these cells into the brain of athymic nude mice. We isolated cells resembling BM-MSCs named pituitary adenoma stroma mesenchymal stem-like cells (PAS-MSLCs). PAS-MSLCs were spindle shaped and had adherent characteristics. FACS analysis identified that the PAS-MSLCs had a bit similar surface markers to BM-MSCs. Isolated cells expressed surface antigen, positive for CD105, CD75, and negative for CD45, NG2, and CD90. We found that these cells were capable of differentiation into adipocytes, osteocytes and chondrocytes. Tumor was not developed in the nude mice brains that were implanted with the PAS-MSLCs. In this study, we showed that MSLCs can be isolated from a pituitary adenoma specimen which is not tumorigenic.