• Title/Summary/Keyword: tumor improve

Search Result 568, Processing Time 0.028 seconds

Accuracy evaluation of liver and tumor auto-segmentation in CT images using 2D CoordConv DeepLab V3+ model in radiotherapy

  • An, Na young;Kang, Young-nam
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.341-352
    • /
    • 2022
  • Medical image segmentation is the most important task in radiation therapy. Especially, when segmenting medical images, the liver is one of the most difficult organs to segment because it has various shapes and is close to other organs. Therefore, automatic segmentation of the liver in computed tomography (CT) images is a difficult task. Since tumors also have low contrast in surrounding tissues, and the shape, location, size, and number of tumors vary from patient to patient, accurate tumor segmentation takes a long time. In this study, we propose a method algorithm for automatically segmenting the liver and tumor for this purpose. As an advantage of setting the boundaries of the tumor, the liver and tumor were automatically segmented from the CT image using the 2D CoordConv DeepLab V3+ model using the CoordConv layer. For tumors, only cropped liver images were used to improve accuracy. Additionally, to increase the segmentation accuracy, augmentation, preprocess, loss function, and hyperparameter were used to find optimal values. We compared the CoordConv DeepLab v3+ model using the CoordConv layer and the DeepLab V3+ model without the CoordConv layer to determine whether they affected the segmentation accuracy. The data sets used included 131 hepatic tumor segmentation (LiTS) challenge data sets (100 train sets, 16 validation sets, and 15 test sets). Additional learned data were tested using 15 clinical data from Seoul St. Mary's Hospital. The evaluation was compared with the study results learned with a two-dimensional deep learning-based model. Dice values without the CoordConv layer achieved 0.965 ± 0.01 for liver segmentation and 0.925 ± 0.04 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.927 ± 0.02 for liver division and 0.903 ± 0.05 for tumor division. The dice values using the CoordConv layer achieved 0.989 ± 0.02 for liver segmentation and 0.937 ± 0.07 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.944 ± 0.02 for liver division and 0.916 ± 0.18 for tumor division. The use of CoordConv layers improves the segmentation accuracy. The highest of the most recently published values were 0.960 and 0.749 for liver and tumor division, respectively. However, better performance was achieved with 0.989 and 0.937 results for liver and tumor, which would have been used with the algorithm proposed in this study. The algorithm proposed in this study can play a useful role in treatment planning by improving contouring accuracy and reducing time when segmentation evaluation of liver and tumor is performed. And accurate identification of liver anatomy in medical imaging applications, such as surgical planning, as well as radiotherapy, which can leverage the findings of this study, can help clinical evaluation of the risks and benefits of liver intervention.

Current Trends in Cancer Vaccines - a Bioinformatics Perspective

  • Sankar, Shanju;Nayanar, Sangeetha K.;Balasubramanian, Satheesan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4041-4047
    • /
    • 2013
  • Cancer vaccine development is in the process of becoming reality in future, due to successful phase II/III clinical trials. However, there are still problems due to the specificity of tumor antigens and weakness of tumor associated antigens in eliciting an effective immune response. Computational models to assess the vaccine efficacy have helped to improve and understand what is necessary for personalized treatment. Further research is needed to elucidate the mechanisms of activation of antigen specific cytotoxic T lymphocytes, decreased TREG number functionality and antigen cascade, so that overall improvement in vaccine efficacy and disease free survival can be attained. T cell epitomic based in sillico approaches might be very effective for the design and development of novel cancer vaccines.

Aortic Body Tumor in a Dog (개의 대동맥소체(大動脈小體) 종양(腫瘍) 일례(一例))

  • Youn, Jae-Hong;Lee, Seok-Kyun;Park, Nam-Yong
    • Korean Journal of Veterinary Research
    • /
    • v.22 no.2
    • /
    • pp.247-251
    • /
    • 1982
  • A 6-year-old male German Shepherd was admitted to the Armed Forces Second Animal Clinic for clinical examination The symptoms were anorexia, dyspnea, emaciation and ascites. Treatment was given for a month but its condition did not improve, euthanasia was therefore performed and the dog was submitted for necropsy. A tumor was found at the base of the heart between the ascending aorta and the pulmonary artery It was diagnosed an aortic body tumor by clinical signs, gross lesions and histopathologic features.

  • PDF

A Study of Yangseng-method in Tumor (종양(腫瘍)의 양생법(養生法)에 관한 소고(小考))

  • Shin, Yong-Cheol
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.3
    • /
    • pp.213-222
    • /
    • 2008
  • Objective : The Purpose of this study was to investigate the Yangseng-method in Tumor, to know how to help the patients from the disease. Method : In order to know the relations between Yangseng and disease, various books and reports are investigated. And the results as follows. Conclusions : According to the traditonal medical theory, Oriental medicine focused on Yangseng(養生). And it is able to resist the disease and adapt to the environment and assist the healing of the body. And it is in harmony with Qi-circulation, so smoothing the circulation of meridians, strengthened Essentialmaterial, Qi, Sprit. Yangseng can be effective for cancer patients to control mind and improve self-confidence and is helpful of preventation of disease and mental health. Especially Mind-control of Yangseng is more important of all.

  • PDF

Successful Management of Pulmonary and Inferior Vena Cava Tumor Embolism from Renal Cell Carcinoma

  • Shim, Hunbo;Kim, Wook Sung;Kim, Young-Wook;Yang, Shin-Seok;Kim, Duk-Kyung
    • Journal of Chest Surgery
    • /
    • v.45 no.5
    • /
    • pp.323-325
    • /
    • 2012
  • Pulmonary tumor embolism can be a cause of respiratory failure in patients with cancer even though it occurs rarely. We describe a 56-year-old man who underwent a pulmonary tumor embolectomy using cardiopulmonary bypass on beating heart combined with inferior vena cava embolectomy and right radical nephrectomy. Aggressive surgical treatment in this severe case is necessary not only to reduce the fatal outcome of pulmonary embolism in the short run, but also to improve the oncological prognosis in the long term.

Mouse models of breast cancer in preclinical research

  • Park, Mi Kyung;Lee, Chang Hoon;Lee, Ho
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.160-165
    • /
    • 2018
  • Breast cancer remains the second leading cause of cancer death among woman, worldwide, despite advances in identifying novel targeted therapies and the development of treating strategies. Classification of clinical subtypes (ER+, PR+, HER2+, and TNBC (Triple-negative)) increases the complexity of breast cancers, which thus necessitates further investigation. Mouse models used in breast cancer research provide an essential approach to examine the mechanisms and genetic pathway in cancer progression and metastasis and to develop and evaluate clinical therapeutics. In this review, we summarize tumor transplantation models and genetically engineered mouse models (GEMMs) of breast cancer and their applications in the field of human breast cancer research and anti-cancer drug development. These models may help to improve the knowledge of underlying mechanisms and genetic pathways, as well as creating approaches for modeling clinical tumor subtypes, and developing innovative cancer therapy.

Metabolic Challenges in Anticancer CD8 T Cell Functions

  • Andrea M. Amitrano;Minsoo Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.9.1-9.15
    • /
    • 2023
  • Cancer immunotherapies continue to face numerous obstacles in the successful treatment of solid malignancies. While immunotherapy has emerged as an extremely effective treatment option for hematologic malignancies, it is largely ineffective against solid tumors due in part to metabolic challenges present in the tumor microenvironment (TME). Tumor-infiltrating CD8+ T cells face fierce competition with cancer cells for limited nutrients. The strong metabolic suppression in the TME often leads to impaired T-cell recruitment to the tumor site and hyporesponsive effector functions via T-cell exhaustion. Growing evidence suggests that mitochondria play a key role in CD8+ T-cell activation, migration, effector functions, and persistence in tumors. Therefore, targeting the mitochondrial metabolism of adoptively transferred T cells has the potential to greatly improve the effectiveness of cancer immunotherapies in treating solid malignancies.

Development of Brain Tumor Detection using Improved Clustering Method on MRI-compatible Robotic Assisted Surgery (MRI 영상 유도 수술 로봇을 위한 개선된 군집 분석 방법을 이용한 뇌종양 영역 검출 개발)

  • Kim, DaeGwan;Cha, KyoungRae;Seung, SungMin;Jeong, Semi;Choi, JongKyun;Roh, JiHyoung;Park, ChungHwan;Song, Tae-Ha
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.105-115
    • /
    • 2019
  • Brain tumor surgery may be difficult, but it is also incredibly important. The technological improvements for traditional brain tumor surgeries have always been a focus to improve the precision of surgery and release the potential of the technology in this important area of the body. The need for precision during brain tumor surgery has led to an increase in Robotic-assisted surgeries (RAS). One of the challenges to the widespread acceptance of RAS in the neurosurgery is to recognize invisible tumor accurately. Therefore, it is important to detect brain tumor size and location because surgeon tries to remove as much tumor as possible. In this paper, we proposed brain tumor detection procedures for MRI (Magnetic Resonance Imaging) system. A method of automatic brain tumor detection is needed to accurately target the location of the lesion during brain tumor surgery and to report the location and size of the lesion. In the qualitative assessment, the proposed method showed better results than those obtained with other brain tumor detection methods. Comparisons among all assessment criteria indicated that the proposed method was significantly superior to the threshold method with respect to all assessment criteria. The proposed method was effective for detecting brain tumor.

Biodistribution and Scintigraphy of Iodine-131-Iododeoxyadenosine in Rats Bearing Breast Cancer (흰쥐에서 Iodine-131-Iododeoxyadenosine의 생체분포 및 유방암 영상화에 관한 연구)

  • Kim, Seon-Gu;Kim, Chang-Guhn;Lee, Kang-Mo;Kim, Hye-Won;Min Byung-Cheol;Choi, See-Sung;Lee, Jong-Deuk;Yang, David J.;Kim, E. Edmund;Lee, Hyun-Chul;Won Jong-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.374-381
    • /
    • 1998
  • Purpose: I-131 labeled (2'-deoxy-2'-iodo-${\beta}$-D-arabinofuranosyl) adenine (IAD) may be involved in DNA synthesis during active proliferation of tumor cells. We conducted this study to find out the biodistribution of IAD and it's feasibility for scintigraphic tumor imaging. Materials and Methods: Tosyl acetyl-adenosine was dissolved in acetonitrile, and I-131-NaI was added and heated to synthesize IAD. Female Fisher 344 rats innoculated with breast tumor cells were injected with 0.27 MBq of IAD. Rats were sacrificed at 0.5, 1, 2, 4, 24h and the % of injected dose per gram of tissue (%ID/g) was determined. For scintigraphy, rats bearing breast cancer were administered with 1.11 MBq of IAD and imaging was performed after 2 and 24h. Then, rat body was fixed and microtomized slice was placed on radiographic film for autoradiography. Results: %ID/g of tumor was 0.74 (0.5h),0.73 (1h), 0.55 (2h), 0.38 (4h), and 0.05 (24h), respectively. At 1h after injection, %ID/g of tumor was higher than that of heart (0.34), liver (0.42), spleen (0.47), kidney (0.69), muscle (0.14), bone (0.33) and intestine (0.51). However, %ID/g of tumor was lower than blood (1.06), lung (0.77), and thyroid (177.71). At 4h, %ID/g of tumor in comparison with other tissue did not change. Tumor contrast expressed by tumor to blood ratio was 0.69 and tumor to muscle ratio was 5.11 at 1h. However, these ratios did not improve through 24h. On autoradiogram and scintigraphy at 2 and 24 hour, the tumor was well visualized. Conclusion: This results suggest that IAD may have a potential for tumor scintigraphy. However, further work is needed to improve localization in tumor tissue.

  • PDF

Proteomic Profiling of Serum from Stage I Lung Squamous Cell Carcinoma Patients

  • Li, Xin-Ju;Wu, Qi-Fei;He, Da-Lin;Fu, Jun-Ke;Jin, Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2273-2276
    • /
    • 2013
  • Objectives: This study employed proteomic profiling to identify specific tumor markers that might improve early diagnosis of lung squamous cell carcinoma. Methods: Serum samples were isolated from 30 patients with stage I lung squamous cell carcinoma and 30 age-and gender-matched healthy controls, and proteomic profiles were obtained by matrix-assisted laser desorption ionization time of flight mass spectrometry. Results: Three highly expressed potential tumor markers were identified in the sera of stage I lung squamous cell carcinoma patients, with molecular weights of 3261.69, 3192.07, and 2556.92 Da. One protein peak with molecular weight 3261.69 Da was chosen as the candidate biomarker and identified as a fibrinogen alpha chain through a search of the IPI, NCBI or SWISS-PROT protein databases. Conclusion: As a potential tumor biomarker, fibrinogen alpha chain may be applicable for the early diagnosis and prognosis of lung squamous cell carcinoma patients.