Recent updates in genomic-integrated glioma classification have caused confusion in current clinical practice, as management protocols and health insurance systems are based on evidence from previous diagnostic classifications. The Korean Brain Tumor Society conducted an electronic questionnaire for society members, asking for their ideas on risk group categorization and preferred treatment for each individual diagnosis listed in the new World Health Organization (WHO) classification of gliomas. Additionally, the current off-label drug use (OLDU) protocols for glioma management approved by the Health Insurance Review and Assessment Service (HIRA) in Korea were investigated. A total of 24 responses were collected from 20 major institutes in Korea. A consensus was reached on the dichotomic definition of risk groups for glioma prognosis, using age, performance status, and extent of resection. In selecting management protocols, there was general consistency in decisions according to the WHO grade and the risk group, regardless of the individual diagnosis. As of December 2022, there were 22 OLDU protocols available for the management of gliomas in Korea. The consensus and available options described in this report will be temporarily helpful until there is an accumulation of evidence for effective management under the new classification system for gliomas.
Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.
Primary liver carcinomas have classified classified into hepatocellular carcinoma, cholangiocarcinoma, and combined hepatocellular-cholangiocarcinoma (CHC). CHC is a tumor containing unequivocal, intimately mixed elements of both hepatocellular carcinoma and cholangiocarcinoma. It forms a small but significant proportion of primary liver carcinomas. The origin and pathogenesis of CHC have not been well established. According to the 2010 WHO classification, CHCs are categorized into 2 groups: the classical type and a subtype with stem cell features. This review describes recent progress in pathology and classification of CHC.
Objective: To investigate the association of ultrasound (US) features of follicular thyroid carcinoma (FTC) with tumor invasiveness and prognosis based on the World Health Organization (WHO) classification and telomerase reverse transcriptase (TERT) promoter mutations. Materials and Methods: This retrospective study included 54 surgically confirmed FTC patients with US images and TERT promoter mutations (41 females and 13 males; median age [interquartile range], 40 years [30-51 years]). The WHO classification consisted of minimally invasive (MI), encapsulated angioinvasive (EA), and widely invasive (WI) FTCs. Alternative classifications included Group 1 (MI-FTC and EA-FTC with wild type TERT), Group 2 (WI-FTC with wild type TERT), and Group 3 (EA-FTC and WI-FTC with mutant TERT). Each nodule was categorized according to the US patterns of the Korean Thyroid Imaging Reporting and Data System (K-TIRADS) and American College of Radiology-TIRADS (ACR-TIRADS). The Jonckheere-Terpstra and Cochran-Armitage tests were used for statistical analysis. Results: Among 54 patients, 29 (53.7%) had MI-FTC, 16 (29.6%) had EA-FTC, and nine (16.7%) had WI-FTC. In both the classifications, lobulation, irregular margins, and final assessment categories showed significant differences (all Ps ≤ 0.04). Furthermore, the incidences of lobulation, irregular margin, and high suspicion category tended to increase with increasing tumor invasiveness and worse prognosis (all Ps for trend ≤ 0.006). In the WHO groups, hypoechogenicity differed significantly among the groups (P = 0.01) and tended to increase in proportion as tumor invasiveness increased (P for trend = 0.02). In the alternative group, punctate echogenic foci were associated with prognosis (P = 0.03, P for trend = 0.03). Conclusion: Increasing tumor invasiveness and worsening prognosis in FTC based on the WHO classification and TERT promoter mutation results were positively correlated with US features that indicate malignant probability according to both K-TIRADS and ACR-TIRADS.
Although digital mammography is a representative method for breast cancer detection. It has a limitation in detecting and classifying breast tumor due to superimposed structures. Machine learning, which is a part of artificial intelligence fields, is a method for analysing a large amount of data using complex algorithms, recognizing patterns and making prediction. In this study, we proposed a technique to improve the diagnostic accuracy of energy-selective mammography by training data using the machine learning algorithm and using dual-energy measurements. A dual-energy images obtained from a photon-counting detector were used for the input data of machine learning algorithms, and we analyzed the accuracy of predicted tumor thickness for verifying the machine learning algorithms. The results showed that the classification accuracy of tumor thickness was above 95% and was improved with an increase of imput data. Therefore, we expect that the diagnostic accuracy of energy-selective mammography can be improved by using machine learning.
Park, Hyoung-Min;Kim, HuiSu;Kim, Dong Wook;Yoon, Jong-Hyuk;Kim, Byung-Gyu;Cho, Je-Yoel
BMB Reports
/
제53권12호
/
pp.664-669
/
2020
Breast cancer is one of the most frequently diagnosed cancers. Although biomarkers are continuously being discovered, few specific markers, rather than classification markers, representing the aggressiveness and invasiveness of breast cancer are known. In this study, we used samples from canine mammary tumors in a comparative approach. We subjected 36 fractions of both canine normal and mammary tumor plasmas to high-performance quantitative proteomics analysis. Among the identified proteins, LCAT was selectively expressed in mixed tumor samples. With further MRM and Western blot validation, we discovered that the LCAT protein is an indicator of aggressive mammary tumors, an advanced stage of cancer, possibly highly metastatic. Interestingly, we also found that LCAT is overexpressed in high-grade and lymph-node-positive breast cancer in silico data. We also demonstrated that LCAT is highly expressed in the sera of advanced-stage human breast cancers within the same classification. In conclusion, we identified a possible common plasma protein biomarker, LCAT, that is highly expressed in aggressive human breast cancer and canine mammary tumor.
조기 유방암을 진단하기 위해서는 유방초음파 판독이 매우 중요하다. 초음파 검사는 초음파장비에 따라 화질의 차이가 심하게 나타날 뿐만 아니라 검사자의 경험과 숙련 정도에 따라 진단의 차이가 크게 나타난다. 따라서 정확한 진단과 치료를 위하여 객관적인 판단기준이 필요하다. 이에 본 연구에서는 GLCM(Gray Level Co-occurrence Matrix) 알고리듬을 적용하여 질감 특성을 분석하고 특징파라미터들을 추출하여 신경망분류기를 이용하여 유방암을 진단하였다. 유방초음파 영상은 정상 조직과 양성, 악성 종양으로 분류하여 질감 특성 파라미터 6가지를 추출하였다. 유방초음파검사로 진단된 정상 영상, 악성 및 양성종양 영상 각각 14증례를 대상으로 추출된 6개의 파라미터들을 적용하여 다층 퍼셉트론 신경망구조 역전파 학습방법으로 학습을 시켰다. 학습된 모델에 정상 유방 영상 51증례, 양성종양 영상 62증례, 악성종양 영상 74증례의 영상을 사용하여 분류한 결과 95.2%의 분류율을 나타내었다.
Kim, Ki-Sung;Song, Hye-Jung;Shin, Won-Sub;Song, Kang-Won
대한임상검사과학회지
/
제43권2호
/
pp.48-56
/
2011
Gastrointestinal stromal tumor (GIST) is a mesenchymal tumor and is associated with a specific immunophenotype index. It is very important to identify the specific immunophenotype and the diagnosis for the treatment GIST patients. Ninety two cases of GIST analyzed in this study were immuno-stained for c-kit, DOG1, CD34, PKC-${\theta}$, PDGFR-${\alpha}$. The rate of positive staining and statistical significance were then compared. In addition, the GISTs were analyzed as followings: very low risk, low risk, intermediate risk and high risk according to tumor size and nuclear division, and later correlated with clinical parameters. The results of the GIST positive stainings were: DOG1 (95.7%), PKC-${\theta}$ (90.2%), PDGFR-${\alpha}$ (88.0%), c-kit (87.0%) and CD34 (71.7%). Only DOG1 staining showed a statistical significance of p<0.05. It was identified in the classification system of histologic risk that staining expression of DOG1, PKC-${\theta}$, PDGFR-${\alpha}$ were significantly increased as histologic risk increases (p<0.05). However, clinical parameters such as age and sex of patients have no correlations with the classification system of histologic risk (p>0.05). Therefore, in this study, the expression of DOG1 showed statistical significance and DOG1, PKC-${\theta}$, PDGFR-${\alpha}$ staining increased significantly as the histologic risk increases in histologic classification system. Taken together, the DOG1 staining should be very effective for the diagnosis of GIST patients.
Objective : The endoscopic endonasal transsphenoidal approach is a widely-used method for the surgical treatment of pituitary adenomas. We aimed to evaluate the results of endoscopic surgery by comparing preoperative classification methods and investigating their relationship with postoperative resection and remission rates and complications. Methods : We retrospectively reviewed the medical records of 236 patients (118 males) who underwent surgery for pituitary adenomas. Preoperative Knosp classification, tumor size (TS), suprasellar extension (SSE), postoperative resection and remission rates, and complications were evaluated. Results : The follow-up period was 3 months to 6 years. The patients' ages ranged between 16 and 84 years. Endocrinologically, 114 patients (48.3%) had functional adenoma (FA), and 122 patients (51.7%) had non-functional adenoma (NFA). Among the FA group, 92 (80.7%) showed remission. A statistically significant difference was found between patients with and without remission in terms of the Knosp, TS, and SSE classifications (p<0.01). Knosp, TS, and SSE classification grades were found to be correlated with the resection rates (p<0.01). Meningitis was seen in seven patients (3.0%), diabetes insipidus in 16 (6.9%; permanently in two [0.9%]), and rhinorrhea in 19 (8.1%). Thirty-six patients (15.3%) developed pituitary insufficiency and received hormone replacement therapy. Conclusion : The resection categories and remission rates of FAs were directly proportional to the adenoma sizes and Knosp grades, while the degree of suprasellar growth further complicated resection and remission rates. Adenoma sizes less than 2 cm and SSEs less than 1 cm are associated with favorable remission and resection rates.
Communications for Statistical Applications and Methods
/
제13권3호
/
pp.567-576
/
2006
In this paper, we applied the multiblock dimension reduction methods to the classification of tumor based on microarray gene expressions data. This procedure involves clustering selected genes, multiblock dimension reduction and classification using linear discrimination analysis and quadratic discrimination analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.