• 제목/요약/키워드: tubular joint rigidity

검색결과 3건 처리시간 0.015초

Modelling and classification of tubular joint rigidity and its effect on the global response of CHS lattice girders

  • Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.677-698
    • /
    • 2005
  • In engineering practice, tubular connections are usually assumed pinned or rigid. Recent research showed that tubular joints may exhibit non-rigid behavior under axial or bending loads. This paper is concerned with establishing a new classification for tubular joints and investigating the effect of joint rigidity on the global behavior of CHS (Circular Hollow Section) lattice girders. Parametric formulae for predicting tubular joint rigidities are proposed, which are based on the finite element analyses through systematic variation of the main geometric parameters. Comparison with test results proves the reliability of these formulae. By considering the deformation patterns of respective parts of Vierendeel lattice girders, the boundary between rigid and semirigid tubular connections is built in terms of joint bending rigidity. In order to include characteristics of joint rigidity in the global structural analysis, a type of semirigid element which can effectively reflect the interaction of two braces in K joints is introduced and validated. The numerical example of a Warren lattice girder with different joint models shows the great effect of tubular joint rigidities on the internal forces, deformation and secondary stresses.

Flexural behavior and resistance of uni-planar KK and X tubular joints

  • Chen, Yiyi;Wang, Wei
    • Steel and Composite Structures
    • /
    • 제3권2호
    • /
    • pp.123-140
    • /
    • 2003
  • The importance of the research on moment-resistant properties of unstiffened tubular joints and the research background are introduced. The performed experimental research on the bending rigidity and capacity of the joints is reported. The emphasis is put on the discussion of the flexural behavior of the joints including sets of geometrical parameters of the joints and several loading combinations. Procedures and results of loading tests on four full size joints in planar KK and X configuration are described in details at first. Mechanical models are proposed to analyze the joint specimens. Three-dimensional nonlinear FE models are established and verified with the experimental results. By comparing the experimental data with the results of the analysis, it is reported reasonable to carry out the structural analysis under the assumption that the joint is fully rigidly connected, and their bending capacities can assure the strength of the members connected under certain limitation. Furthermore, a parametric formula for inplane bengding rigidity of T and Y type tubular joints is proposed on the basis of FE calculation and regression analysis. Compared with test results, it is shown that the parametric formula developed in this paper has good applicability.

Seismic behavior of rebar-penetrated joint between GCFST column and RGC beam

  • Li, Guochang;Fang, Chen;An, Yuwei;Zhao, Xing
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.547-567
    • /
    • 2015
  • The paper makes the experimental and finite-element-analysis investigation on the seismic behavior of the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam under low cyclic reversed loading. Two specimens are designed and conducted for the experiment to study the seismic behavior of the rebar-penetrated joint under cyclic loading. Then, finite element analysis models of the rebar-penetrated joint are developed using ABAQUS 6.10 to serve as the complement of the experiment and further analyze the seismic behavior of the rebar-penetrated joint. Finite element analysis models are also verified by the experimental results. Finally, the hysteretic performance, the bearing capacity, the strength degradation, the rigidity degradation, the ductility and the energy dissipation of the rebar-penetrated joint are evaluated in detail to investigate the seismic behavior of the rebar-penetrated joint through experimental results and finite element analysis results. The research demonstrates that the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam, with full and spindle-shaped load-displacement hysteretic curves, shows generally the high ductility and the outstanding energy-dissipation capacity. As a result, the rebar-penetrated joint exhibits the excellent seismic performance and meets the earthquake-resistant requirements of the codes in China. The research provides some references and suggestions for the application of the rebar-penetrated joint in the projects.