• 제목/요약/키워드: tubular bioreactor

검색결과 4건 처리시간 0.02초

Tubular Bioreactor에서 Botryococcus braunii를 이용한 축산폐수의 고도처리 (Advanced Treatment of Swine Wastewater by Botryococcus braunii in a Tubular Bioreactor)

  • 이석준;김희식;윤병대;오희목
    • 한국미생물·생명공학회지
    • /
    • 제27권2호
    • /
    • pp.153-158
    • /
    • 1999
  • This study was conducted to investigate the production of lipid, and removal of nitrogen and phosphorus from swine wastewater by Botryococcus braunii UTEX 572 in a tubular bioreactor. The rate of dry cell weight increase of B. braunii was highest at 20.1mg/l/din a modified Chu 13 medium at $25^{\circ}C$. Under the above conditions, the rate of lipid content increase was also highest at 6.1mg/l/d. The lipid content of B. braunii on a dry weight basis ranged from 30.5 to 34.1% with an average value of 32.3%. When B. braunii was cultured in a secondary-treated swine wastewater diluted to 50% with tap water, the rate of dry cell weight increase was 18.6mg/l/d and the rate of lipid content increase was 6.0mg/l/d. The lipid content ranged from 30.3 to 34.2%. No significant difference was observed between lipid content and growth conditions. The removal rates of nitrogen and phosphorus in swine wastewater were 43.9% and 41.7%, respectively, after 14 days of incubation.

  • PDF

Membrane Bioreactor를 이용한 폭발성 물질의 가수분해 부산물의 탈질과정에의 적용 (Application of a Membrane Bioreactor in Denitrification of Explosives Hydrolysates)

  • 조경덕
    • 한국물환경학회지
    • /
    • 제18권2호
    • /
    • pp.113-122
    • /
    • 2002
  • A bench-scale anoxic membrane bioreactor (MBR) system, consisting of a bioreactor coupled to a ceramic crossflow ultrafiltration module, was evaluated to treat a synthetic wastewater containing alkaline hydrolysis byproducts (hydrolysates) of RDX, The wastewater was formulated the same as RDX hydrolysates, and consisted of acetate, formate, formaldehyde as carbon sources and nitrite, nitrate as electron accepters. The MBR system removed 80 to 90% of these carbon sources, and approximately 90% of the stoichiometric amount of nitrate, 60% of nitrite. The reactor was also operated over a range of transmembrane pressures, temperatures, suspended solids concentration, and organic loading rate in order to maximize treatment efficiency and permeate flux. Increasing transmembrane pressure and temperature did not improve membrane flux significantly. Increasing biomass concentration in the bioreactor decreased the permeate flux significantly. The maximum volumetric organic loading rate was $0.72kg\;COD/m^3/day$, and the maximum F/M ratio was 0.50 kg N/kg MLSS/day and 1.82 kg COD/kg MLSS/day. Membrane permeate was clear and essentially free of bacteria, as indicated by heterotrophic plate count. Permeate flux ranged between 0.15 and $2.0m^3/m^2/day$ and was maintained by routine backwashing every 3 to 4 day. Backwashing with 2% NaOCl solution every fourth or fifth backwashing cycle was able to restore membrane flux to its original value.

암모니아 센서를 이용한 간헐폭기 Membrane bioreactor공정에서의 전력비 저감과 관형막을 이용한 슬러지 농축에 관한 연구 (A study on an intermittent aeration membrane bioreactor system using ammonia sensor to decrease energy consumption and sludge concentration by tubular membrane)

  • 강희석;이의종;김형수;장암
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.161-170
    • /
    • 2014
  • It is essential to decrease energy consumption and excess sludge to economically operate sewage treatment plant. This becomes more important along with a ban on sea dumping and exhaustion of resource. Therefore, many researchers have been study on energy consumption reduction and strategies for minimization of excess sludge production from the activated sludge process. The aeration cost account for a high proportion of maintenance cost because sufficient air is necessary to keep nitrifying bacteria activity of which the oxygen affinity is inferior to that of heterotrophic bacteria. Also, additional costs are incurred to stabilize excess sludge and decrease the volume of sludge. There were anoxic, aerobic, membrane, deairation and concentration zone in this MBR process. Continuous aeration was provided to prevent membrane fouling in membrane zone and intermittent aeration was provided in aerobic zone through ammonia sensor. So, there was the minimum oxygen to remove $NH_4-N$ below limited quantity that could be eliminated in membrane zone. As the result of this control, energy consumption of aeration system declined by between 10.4 % and 19.1 %. Besides, we could maintain high MLSS concentration in concentration zone and this induced the microorganisms to be in starved condition. Consequentially, the amount of excess sludge decrease by about 15 %.

활성슬러지조내 부직포 여재 관형필터의 고액분리 특성 평가 (Evaluation of Tubular Type Non-woven Fabric Filter for Solid-liquid Separation in Activated Sludge Reactor)

  • 서규태;이택순;박영미
    • 대한환경공학회지
    • /
    • 제30권2호
    • /
    • pp.234-238
    • /
    • 2008
  • 활성슬러지 공정에 막을 침지한 MBR(Membrane Bioreactor)공정에서 고가의 막을 대체하여 부직포 같은 섬유 여과막을 이용한 연구가 수행되었다. 부직포는 저렴한 가격, 저압에서 높은 투과유속의 확보 등 막을 대체할 수 있는 대안으로서 가치가 높다. 그러나 부직포 여과막 모듈은 막에 비하여 비표면적이 현저하게 작기 때문에 이를 증가시키는 노력이 필요하다. 본 연구에서는 활성슬러지 공정에 부직포 여과 관형 막모듈을 침지하여 설치형태와 관직경에 따라 여과압력에 미치는 영향을 실험적으로 검토하였다. 관형 필터의 직경이 같을 때, 반응조내 필터 모듈의 설치형태가 여과압력 변화에 미치는 영향은 없었다. 그러나 필터의 관 직경이 작을수록 여과압력의 상승이 빠르게 나타났고 이는 관내 수리학적 손실에 기인된 것으로 해석되었다. 따라서 관형 부직포 여과막은 관경 10 mm 이상에서 비표면적을 고려하여 설계하고, 반응조내 수직형으로 설치함이 적정한 것으로 나타났다.