• Title/Summary/Keyword: tubular bioreactor

Search Result 4, Processing Time 0.019 seconds

Advanced Treatment of Swine Wastewater by Botryococcus braunii in a Tubular Bioreactor (Tubular Bioreactor에서 Botryococcus braunii를 이용한 축산폐수의 고도처리)

  • 이석준;김희식;윤병대;오희목
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.153-158
    • /
    • 1999
  • This study was conducted to investigate the production of lipid, and removal of nitrogen and phosphorus from swine wastewater by Botryococcus braunii UTEX 572 in a tubular bioreactor. The rate of dry cell weight increase of B. braunii was highest at 20.1mg/l/din a modified Chu 13 medium at $25^{\circ}C$. Under the above conditions, the rate of lipid content increase was also highest at 6.1mg/l/d. The lipid content of B. braunii on a dry weight basis ranged from 30.5 to 34.1% with an average value of 32.3%. When B. braunii was cultured in a secondary-treated swine wastewater diluted to 50% with tap water, the rate of dry cell weight increase was 18.6mg/l/d and the rate of lipid content increase was 6.0mg/l/d. The lipid content ranged from 30.3 to 34.2%. No significant difference was observed between lipid content and growth conditions. The removal rates of nitrogen and phosphorus in swine wastewater were 43.9% and 41.7%, respectively, after 14 days of incubation.

  • PDF

Application of a Membrane Bioreactor in Denitrification of Explosives Hydrolysates (Membrane Bioreactor를 이용한 폭발성 물질의 가수분해 부산물의 탈질과정에의 적용)

  • Zoh, Kyung-Duk
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • A bench-scale anoxic membrane bioreactor (MBR) system, consisting of a bioreactor coupled to a ceramic crossflow ultrafiltration module, was evaluated to treat a synthetic wastewater containing alkaline hydrolysis byproducts (hydrolysates) of RDX, The wastewater was formulated the same as RDX hydrolysates, and consisted of acetate, formate, formaldehyde as carbon sources and nitrite, nitrate as electron accepters. The MBR system removed 80 to 90% of these carbon sources, and approximately 90% of the stoichiometric amount of nitrate, 60% of nitrite. The reactor was also operated over a range of transmembrane pressures, temperatures, suspended solids concentration, and organic loading rate in order to maximize treatment efficiency and permeate flux. Increasing transmembrane pressure and temperature did not improve membrane flux significantly. Increasing biomass concentration in the bioreactor decreased the permeate flux significantly. The maximum volumetric organic loading rate was $0.72kg\;COD/m^3/day$, and the maximum F/M ratio was 0.50 kg N/kg MLSS/day and 1.82 kg COD/kg MLSS/day. Membrane permeate was clear and essentially free of bacteria, as indicated by heterotrophic plate count. Permeate flux ranged between 0.15 and $2.0m^3/m^2/day$ and was maintained by routine backwashing every 3 to 4 day. Backwashing with 2% NaOCl solution every fourth or fifth backwashing cycle was able to restore membrane flux to its original value.

A study on an intermittent aeration membrane bioreactor system using ammonia sensor to decrease energy consumption and sludge concentration by tubular membrane (암모니아 센서를 이용한 간헐폭기 Membrane bioreactor공정에서의 전력비 저감과 관형막을 이용한 슬러지 농축에 관한 연구)

  • Kang, Heeseok;Lee, Euijong;Kim, Hyungsoo;Jang, Am
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.161-170
    • /
    • 2014
  • It is essential to decrease energy consumption and excess sludge to economically operate sewage treatment plant. This becomes more important along with a ban on sea dumping and exhaustion of resource. Therefore, many researchers have been study on energy consumption reduction and strategies for minimization of excess sludge production from the activated sludge process. The aeration cost account for a high proportion of maintenance cost because sufficient air is necessary to keep nitrifying bacteria activity of which the oxygen affinity is inferior to that of heterotrophic bacteria. Also, additional costs are incurred to stabilize excess sludge and decrease the volume of sludge. There were anoxic, aerobic, membrane, deairation and concentration zone in this MBR process. Continuous aeration was provided to prevent membrane fouling in membrane zone and intermittent aeration was provided in aerobic zone through ammonia sensor. So, there was the minimum oxygen to remove $NH_4-N$ below limited quantity that could be eliminated in membrane zone. As the result of this control, energy consumption of aeration system declined by between 10.4 % and 19.1 %. Besides, we could maintain high MLSS concentration in concentration zone and this induced the microorganisms to be in starved condition. Consequentially, the amount of excess sludge decrease by about 15 %.

Evaluation of Tubular Type Non-woven Fabric Filter for Solid-liquid Separation in Activated Sludge Reactor (활성슬러지조내 부직포 여재 관형필터의 고액분리 특성 평가)

  • Seo, Gyu-Tae;Lee, Teak-Soon;Park, Young-Mi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.234-238
    • /
    • 2008
  • Coarse pore filter could be an alternative of membrane for solid-liquid separation in an activated sludge reactor because of inexpensive cost of the filter material and high flux at low filtration pressure. However such filter module has much less specific filtration area compared to the membrane. Therefore a certain effort is required to increase the specific filtration area in the module design of such coarse pore filter for solid-liquid separation in an activated sludge reactor. In this study, tubular type coarse pore filter was designed at various diameter and configuration. The filtration performance was investigated to separate solid in the activated sludge reactor for domestic wastewater treatment. Tubular type coarse pore filter module could be successfully applicable to solid separation in the activated sludge reactor. The design parameters were the tube diameter of 10mm and vertical installation. Smaller diameter of the tube caused faster increase of the filtration pressure because of the hydraulic head loss in the tube channel.