• Title/Summary/Keyword: tuberization response

Search Result 2, Processing Time 0.016 seconds

Effects of Altitude and Planting Time on Tuber Bulking of Potato (감자 고랭지 재배 시 표고 및 파종시기에 따른 괴경의 비대반응)

  • Kim, Chung-Guk;Ok, Hyun-Chung;Jeong, Jin-Chol;Hur, On-Sook;Seo, Jong-Ho;Jeong, Kwang-Ho;Kim, Si-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.418-423
    • /
    • 2012
  • Field experiments were carried out to improve the cultural practice of potato by analysing its tuberization patterns. Tuberization patterns affected by different altitudes was analyzed at two potato cultivation regions, Jinbu (600 m) and Daegwallyung (800 m) using two potato cultivars, 'Superior' and 'Atlantic'. To analyse tuberization patterns affected by different planting time, seed potatoes were planted at every 10 days from April 19 to May 19 in Daegwallyung. Total dry weight was greater in plant grown at the altitude of 800 m than 600 m during the entire growth period and the highest increase was observed at the early growth period, July 6, comparing to other growth period. The total dry weight was the greatest at 110~112 days after planting (DAP) at the altitude of 800 m and 108~111 DAP at 600 m. There was no significant differences between altitudes and between cultivars. Tuber dry weight per plant at the altitude of 600 m was lower than 800 m on July 6 (58 DAP), but it increased rapidly from July 21 (73 DAP). At both altitudes, the increase of tuber dry weight per plant from July 6 to August 8 was higher than the other growth period. The time of growth period at which tuber dry weight per plant was the highest was similar at both altitudes that was 118~125 DAP at the altitude 800 m and 118~124 DAP at the altitude 600 m. Dry weight per tuber at the altitude 800m was higher than 600 m due to the number of tubers per plant. A higher increase of crop growth rate (CGR) was shown at the altitude 600 m on July 6 (58 DAP), comparing to at 800 m. The highest tuber dry weight per plant of each cultivar was shown when the planting time was April 29 for 'Superior' and was April 19 for 'Atlantic'. Both the tuber dry weight of plant and the total dry weight were lower at a later planting time. Dry weight per tuber increased quickly during the period between June 30 to August 8. Tuberization period was shortened as the planting time was delayed.

Performance of Several Jerusalem Artichoke Clones ( Helianthus tuberosus L. ) Screened for Adaptibility in Korea (돼지감자 수집클론의 우리나라 환경 적응성)

  • 임근발
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.305-314
    • /
    • 1997
  • Nineteen clones of Jerusalem Artichoke (JA) from several countries were collected through the series of experiments about JA started in 1979. Collected clones were screened for adaptibility in Korea and showed introduction path way. The results about an ecological response of collected clones including flowering, tuberization, biomass production, sugar contents and grouping of collected clones for use of genetic material were as follows; 1. Nineteen clones collected were ffom Korea(2), Japan(l), USA(Z), Canada(2), France(4), Germany(7), and USSR(1). 2. Through the characteristics of top collected clones were divided to the types of branch-non branch, short and long plant height, and early and late maturity. Tuber characteristics were mainly grouped to the types of white skin color-violet skin color, clusters-single unit, round-elongate, and knotty-smooth. 3. Total sugar yields 6-om top at flowering time were 490 - 630kgl10a and 6-om the tuber were 420 -490 kg/ IOa through the high yielding clones. The top-high yielding clones were Mammoth French White, Fuseau 60, Nahodka, and JA3. The higher tuber yields were got from the clones of D- 19, Colombia, Bianka and Mammoth French White. 4. Collected clones were grouped to three and first group was characterized to early maturity and short plant height and second group to medium and finally, third group to late maturity and high plant height. 5. High yielding of top was 6-om the I group of early maturity and short plant height and high yielding of tuber h m III group of late maturity and high plant height.

  • PDF