• 제목/요약/키워드: tube squash test

검색결과 4건 처리시간 0.023초

Microscopic Analysis of Prefinitely Strained Cement Paste

  • Song, Ha-Won;Kim, Jang-Ho;Choi, Jae-Hyeok;Byun, Keun-Joo
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.127-140
    • /
    • 1999
  • In this paper, a microscopic analysis of prefinitelv strained cement paste specimen was carried out. The microscopic behavior of concrete under triaxial stress must be fully understood in order to explain the additional ductilitv that comes from lateral confinement and to get microstructural information in large deformed and large strained concrete. The so-called "tube-squash" test was applied to achieve enormously high shear and deviatoric strain of concrete under extremly high pressure without fracture. Then, microscopic analyses by focusing on hydration and microstructure of Prefinitely strained cement paste were carried out on cored-out deformed and virgin (undeformed) cement paste specimens : the first specimen being 40 days old, the second one being one year old. The microscopic analysis bv Field Emission Scanning Electronic Microscope (FESEM) was carried out for comparison between the specimens after 40 days and those arter one year. For one year old specimens, X-Ray Diffractometer (XRD) analysis, Energy Dispersive x-rav Spectrometer (EDS) analysis, and Differential Thermal Analysis/Thermo-Gravitv (DTA/TG) analysis were also carried out to study the hydration and the microstructures of prefinitely strained cement paste specimen by focusing on the methodologies of their microscopic analyses. analyses.

  • PDF

Infilled steel tubes as reinforcement in lightweight concrete columns: An experimental investigation and image processing analysis

  • N.Divyah;R.Prakash;S.Srividhya
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.41-53
    • /
    • 2024
  • Under constant and cyclic axial compression, square composite short columns reinforced with Self Compacting Concrete (SCC) added with scrap rubber infilled inside steel tubes and with different types of concrete were cast and tested. The test is carried out to find the effectiveness of utilizing an aggregate manufactured from industrial waste and to address the problems associated with the need for alternative reinforcements along with waste management. The main testing parameters are the type of concrete, the effect of fiber inclusion, and the significance of rubber-infilled steel tubes. The failure modes of the columns and axial load-displacement curves of the steel tube-reinforced columns were all thoroughly investigated. According to the test results, all specimens failed due to compression failure with a longitudinal crack along the loading axis. The fiber-reinforced column specimens demonstrated improved ductility and energy absorption. In comparison to the normal-weight concrete columns, the lightweight concrete columns significantly improved the axial load-carrying capacity. The addition of basalt fiber to the columns significantly increased the yield stress and ultimate stress to 9.21%. The corresponding displacement at yield load and ultimate load was reduced to 10.36% and 28.79%, respectively. The precision of volumetric information regarding the obtained crack quantification, aggregates, and the fiber in concrete is studied in detail through image processing using MATLAB environment.

20% 축압축 시킨 초기재령 시멘트 페이스트 미세 분석 (Microscopic Analysis of Early Age Cement Paste Axially Compressed 20%)

  • 김성훈;김동완;양종석;김장호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.189-194
    • /
    • 2002
  • Many researches in the past have shown that a majority initial cracking in concrete are caused during early age period. Therefore, the close examination of early age concrete behavior under various stress conditions is necessary to fully understand the cracking mechanism of concrete. In this study early age cement paste specimen is axially strained up to 20% of its original length by laterally reinforcing it. This type of test is called "Tube Squash Test" and has been previously used to apply up to 50% axial strain on concrete. Microscopic analyses (XRD, FESEM, EDS and DSE/TG) are performed on 20% axially strained early age cement paste specimen. The analysis results show that the microscopic structures and material characteristics of 20% axially strained cement paste remained same as the unstrained cement paste.

  • PDF

대변형률이 발생한 콘크리트 재료의 다수준 해석 (Multi-level Analysis of Prefinitely Strainely concrete materials)

  • 최재혁;송하원;김장호;박상순;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.405-410
    • /
    • 2000
  • Multi-level (macro-level, meso-level, and micro-level) mechanism of prefinitely strained concrete materials os studied The multi-level analysis explains the additional quasibrittle concrete material ductility that comes from lateral confinement and their multi-level interaction mechanisms. The so-called "upgraded tube-squash test" is used to achieve 50% axial strain and over 70 degree of deviatoric strain of quasibrittle concrete materials under extremely high pressure without producing visible cracks. In the micro-level analysis, the variations of hydration rte, micropores, and hydrate phased are analyzed. In the meso-level analysis, mesocracks (the initial invisible cracks) at the interfaces between aggregates and cement paste matrices are studied. The high confining effect in the specimen on the meso-level cracks is also studied. In the macro-level analysis, the physical behavior of prefinitely strained concrete materials is studied. The co-relationships of the results from the three distinct levels of analyses based in various prestraining (0%, 15%, 35%, and 50%) are studied. For the extremely deformed or strained concrete problems, multi-level analysis will be used to explain the unclear and unstudied mechanism of concrete materials, The multi-level analysis can provide us with valuable insights that can explain the additional ductility and confining effect in concrete. concrete.

  • PDF