• Title/Summary/Keyword: tube internal

Search Result 591, Processing Time 0.033 seconds

Grain Geometry, Performance Prediction and Optimization of Slotted Tube Grain for SRM

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.293-300
    • /
    • 2008
  • Efficient designing of SRM Grains in the field of Rocketry is still the main test for most of the nations of world for scientific studies, commercial and military applications. There is a strong need to enhance thrust, improve the effectiveness of SRM and reduce mass of motor and burning time so as to allow the general design to increase the weight of payload/on board electronics. Moreover burning time can be increased while keeping the weight of the propellant and thrust in desired range, so as to give the time to control / general design group in active phase for incorporating delayed cut off if required. A mathematical design, optimization & analysis technique for Slotted Tube Grain has been discussed in this paper. In order to avoid the uncertainties that whether the Slotted Tube grain configuration being designed is best suited for achieving the set design goals and optimal of all the available designs or not, an efficient technique for designing SRM Grain and then getting optimal solution is must. The research work proposed herein addresses and emphasizes a design methodology to design and optimize Slotted Tube Grain considering particular test cases for which the design objectives and constraints have been given. In depth study of the optimized solution have been conducted thereby affects of all the independent parametric design variables on optimal solution & design objectives have been examined and analyzed in detail. In doing so, the design objectives and constraints have been set, geometric parameters of slotted tube grain have been identified, performance prediction parameters have been calculated, thereafter preliminary designs completed and finally optimal design reached. A Software has been developed in MATLAB for designing and optimization of Slotted Tube grains.

  • PDF

Experimental Study on the Development of Void Precast Concrete Slab using Rubber Tube Mold for Inner Core (고무튜브 몰드 프리캐스트 콘크리트 유공 슬래브 개발에 관한 실험적 연구)

  • Bae, Kyu-Woong;Hong, Sung-Yub
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.293-303
    • /
    • 2021
  • The void PC slab has a structurally reasonable cross-section by forming the hollow section of the neutral axis that is unnecessary for bending behavior. Domestic PC factories have introduced automation equipment to produce hollow PC slabs, and are achieving hollow sections through inserts. However, since the excessive initial investment cost of the PC factory is the main factor in the increase in production cost, other alternatives are needed. Therefore, in this study, when producing hollow PC slab members, by using a rubber tube as a formwork to form an internal hollow space, it is intended to contribute to securing productivity through molding various hollow shapes, making it larger, lightweight, and enabling rapid production. To implement a hollow PC slab using a rubber tube mold, the shape of a hollow cross-section in which the tube is combined was implemented by considering the shape of the rubber tube first. In addition, to secure the concrete quality of the hollow part, the finish properties of the rubber tube mold and concrete were evaluated, and the hollow PC production process was established.

Medical Thoracoscopy in Pleural Disease: Experience from a One-Center Study

  • Kim, Soo Jung;Choi, Sun Mi;Lee, Jinwoo;Lee, Chang-Hoon;Lee, Sang-Min;Yim, Jae-Joon;Yoo, Chul-Gyu;Kim, Young Whan;Han, Sung Koo;Park, Young Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.2
    • /
    • pp.194-200
    • /
    • 2017
  • Background: Medical thoracoscopy (MT) is a minimally invasive, endoscopic procedure for exploration of the pleural cavity under conscious sedation and local anesthesia. MT has been performed at the Seoul National University Hospital since February 2014. This paper summarizes the findings and outcomes of MT cases at this hospital. Methods: Patients who had undergone MT were enrolled in the study. MT was performed by pulmonologists, using both rigid and semi-rigid thoracoscopes. During the procedure, patients were under conscious sedation with fentanyl and midazolam. Medical records were reviewed for clinical data. Results: From February 2014 to January 2016, 50 procedures (47 cases) were performed (diagnostic MT, 26 cases; therapeutic MT, 24 cases). The median age of patients was 66 years (59-73 years), and 38 patients (80.9%) were male. The median procedure duration from initial incision to insertion of the chest tube was 37 minutes. The median doses of fentanyl and midazolam were $50{\mu}g$ and 5 mg, respectively. All procedures were performed without unexpected events. Of the 26 cases of pleural disease with an unknown cause, 19 were successfully diagnosed using MT. Additionally, diagnostic MT provided clinically useful information in the other six patients. Therapeutic MT was very effective for treatment of malignant pleural effusion or empyema. The median number of days with chest tube drainage was 6 (3 days for diagnostic MT and 8 days for therapeutic MT). Conclusion: MT is a useful and necessary procedure for both diagnosis and treatment of pleural diseases.

Effects of internal damping on the bending vibration characteristics of composite drive shaft

  • Mo Yang;Haonan Hu;Xian Zhou;Wen Zhang;Yuebin Zhou;Yikun Wang;Jianmin Ye
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.663-672
    • /
    • 2024
  • This paper researched on the bending vibration characteristics of composite drive shaft with internal damping. To analyze the unbalanced excitation response in full speed range, a transfer matrix model was built based on the improved Layer-wise theory and the numerical damping, and compared with the metal drive shaft. The results show that the effect of internal damping of the composite shaft tube on bending vibration response was different in the subcritical, critical and supercritical speed ranges. Then, the finite element analysis and vibration tests were carried out to verify the analysis results of transfer matrix model.

The effect of inclined ribbed tubes on heat transfer and friction loss (Ribbed 管의 管傾斜角이 熱傳達에 미치는 影響)

  • 박성찬;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.105-109
    • /
    • 1987
  • Artificial roughness as a means of improving heat transfer gains more interest, especially for application to various heat exchanger. This study present experimental information for single-phase free and force convection heat transfer in a circular tube containing a internal spiral ribs. To examine the effect of inclined angle of tube, it was varied from 0 deg to 90 deg (0.deg., 22.5.deg., 45.deg., 90.deg.) with horizontal. Length of tube is 1.6m, and width, height and helix angle of rib are 4.2mm, 1.5mm, and 60 deg respectively. Water was used as a working fluid and test piece was heated with a constant heat flux by electric heater. Experiments have been performed with the range of modified Grashof number from 2 * 10$^{6}$ to 15 * 10$^{6}$ for free convection and with the range of Reynolds number from 3,000 to 40,000 for forced convection. Since the increase in heat transfer coefficients influence directly to the friction coefficient of the tube, the changes of the friction factors are also presented for several different cases considered in this investigation.

Fracture Behavior of Plate Shape Ceramic using Compressive Shock Wave (압축 충격파를 이용한 평판형상 세라믹의 파괴거동)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Lee, Young-Shin;Park, Jong-Ho;Song, Kee-Hyuck;Yoon, Soo-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.103-106
    • /
    • 2009
  • Fracture characteristics of plate shape using shock tube for glass filled ceramics was carried out. Glass filled ceramics have been considered as a promising candidate material for the dome port cover of air breathing engine. This part of the air breathing engine has an important role separating solid and liquid fuel, and needs the frangible characteristics that the fracture of a part should not affect the internal components of combustion. The objectives of this study are to evaluate the fracture pressures for various thicknesses and diameters of shock impact area. Also fracture phenomena of separated membrane using a shock tube are observed. The experimental apparatus of shock tube consists of a driver, a driven section and a dump tank. The used material is glass filled ceramic made from Corning company. Specimens are used 3, 4.5 and 6mm thickness. Also diameters of shock wave area are chosen 70, 60 and 50 mm. It is expected that the results obtained from this study can be used in the basic data for the dome port cover design of an air breathing engine.

  • PDF

Process Design for the Tubular Hydroforming at Elevated Temperatures (온간 하이드로포밍 공정을 위한 시스템 설계)

  • Kim, B.J.;Park, K.S.;Sohn, S.M.;Lee, M.Y.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.226-229
    • /
    • 2006
  • Process design has been performed for the warm hydroforming of light weight alloy tubes. For the heating of tubes, specially designed induction heating system has been adopted to ensure rapid heating of tubes. The induction heating system uses 30kHz frequency induction coil in order to concentrate the energy in the tube and prevent the energy loss. But the induced heat by the integrated heating system, consisting of induction coil, tube, pressure oil and dies, was normally not equally distributed over the length and circumference of the tube specimen, and consequent temperature distribution was non-uniform. So additional heating element has been inserted into the inside of the tube to maintain the forming temperature and reduce temperature drop due to heat loss to the molds. And for that heat loss, a heat insulation system has also been installed. The drop in flow stress at elevated temperatures results in lower internal pressure for hydroforming and lower clamping forces. The proposed warm hydroforming process has been successfully implemented when applying 6061 aluminum extruded tubes.

  • PDF

A Study on Fracture Characteristic of Ceramic Dome Using Shock Tube (충격파관을 이용한 세라믹 돔의 파괴 특성에 관한 연구)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Lee, Young-Shin;Park, Jong-Ho;Kwon, Sun-Guk;Song, Kee-Hyuck;Yoon, Su-Jin;Lee, Gi-Chun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1274-1278
    • /
    • 2009
  • Fracture characteristics for plate and dome shapes of glass filled ceramics using shock tube were carried out. Glass filled ceramics have been considered as a promising candidate material for the dome port cover of air breathing engine. This part of the air breathing engine has an important role as separated membrane between combustion and external air, and needs the frangible characteristics that the particles of fractured glass filled ceramics should not affect the internal components of combustion. The objectives of this study are to evaluate the fracture pressures for various thicknesses and diameters of shock impact area. Also fracture phenomena of separated membrane using a shock tube compare with analytical method. The experimental apparatus consists of a driver, a driven section and a dump tank. The used material is glass filled ceramic made from Corning company. Specimens have the thickness of 3, 4.5 and 6mm. It is expected that the results obtained from this study can be used in the basic data for the dome port cover design of an air breathing engine.

Structural Integrity Evaluation of SG Tube with Surface Wear-type Defects (표면 마모결함을 고려한 증기발생기 세관의 구조건전성 평가)

  • Kim, Jong-Min;Huh, Nam-Su;Chang, Yoon-Suk;Hwang, Seong-Sik;Kim, Joung-Soo;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1618-1625
    • /
    • 2006
  • During the last two decades, several guidelines have been developed and used for assessing the integrity of a defective steam generator (SG) tube that is generally caused by stress corrosion cracking or wall-thinning phenomenon. However, as some of SG tubes are also failed due to fretting and so on, alternative failure estimation schemes are required for relevant defects. In this paper, parametric three-dimensional finite element (FE) analyses are carried out under internal pressure condition to simulate the failure behavior of SG tubes with different defect configurations; elliptical wear, tapered and flat wear type defects. Maximum pressures based on material strengths are obtained from more than a hundred FE results to predict the failure of SG tube. After investigating the effect of key parameters such as defect depth, defect length and wrap angle, simplified failure estimation equations are proposed in relation to the equivalent stress at the deepest point in wear region. Comparison of failure pressures predicted by the proposed estimation scheme with corresponding burst test data showed a good agreement.

Measurement of Ignition Delay Time of Methane/Oxygen Mixtures by Using a Shock Tube (충격파관을 이용한 메탄/산소 혼합기의 점화지연시간 측정)

  • Han, Hee Sun;Wang, YuanGang;Kim, Chul Jin;Sohn, Chae Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • Ignition delay time of methane/oxygen mixture is measured experimentally with the shock tube in order to obtain the data for high pressure conditions where gas turbines and internal combustion engines are operating. The shock tube experiment is validated first over the temperature range of 1400-2000 K at 10 bar and with the various equivalence ratios of 0.5, 1 and 2. The measured ignition delays are compared with the data from the literatures. And then, experiments are conducted for non-explored conditions, i.e., at 40 bar and with the equivalence ratio of 1.5. The present experimental data show a good agreement with the available ones from the literatures and reasonable dependence on pressure and equivalence ratio. In addition, the effects of the temperature and equivalence ratio on ignition delay time are analyzed.