• Title/Summary/Keyword: tube formation

Search Result 475, Processing Time 0.042 seconds

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011 (설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Paik, Yong-Kyoo;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

Variations in Morphological and Geochemical Characteristics in Manganese Nodules from the East Siberian Arctic Shelf with Varying Water Depths (동시베리아해 대륙붕에서 산출되는 망가니즈단괴의 수심에 따른 형태학적·지화학적 특성 변화)

  • Hyo-Jin Koo;Hyen-Goo Cho;Sangmi Lee;Gi-Teak Lim;Hyo-Im Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • In this study, we explore the morphological and geochemical characteristics for 440 manganese nodules collected from two different water depths [ARA12B-St52 (150 m, n = 239) and ARA12B-St58i (73 m, n = 201)] on the continental shelf of the East Siberian Sea from the ARA12B expedition in 2021. We also discussed the variations in the characteristics of manganese nodules with varying water depths in the Arctic Sea. The sizes of the nodules are generally greater than 3 cm at both sites. However, there is an obvious difference in the morphology with water depths. For the nodules collected at 150 m, brown-black colored tabular, tube, and ellipsoidal shapes with a rough surface texture are dominant. On the other hand, yellow-brown tabular shapes with a smooth surface texture are common for the nodules collected at 73 m. Furthermore, the slope of trend line between size and weight is significantly different at both sites: particularly, the slopes of nodules at 150 and 73 m are 1.60 and 0.84, respectively. This indicates the difference in the internal structure, porosity, and constituting elements between both nodules. Micro X-ray Flourescence (µ-XRF) results clearly demonstrate that the internal textures and chemical compositions are different with water depths. The nodules at 150 m are composed of a thick Mn-layer and a thin Fe-layer centered on the nucleus, while the nodules at 73 m are alternately grown with thin Mn- and Fe- layers around the nucleus. The average chemical compositions obtained by µ-XRF are 40.6 wt% Mn, 5.2 wt% Fe, and 7.9 Mn/Fe ratio at 150 m, and 10.3 wt% Mn, 19.0 wt% Fe, and 0.6 Mn/Fe ratio at 73 m. The chemical compositions of the nodules at 150 m are similar to those of nodules from the Peru Basin in the Pacific Ocean, while the compositions of the nodules at 73 m are similar to those of nodules from the Cook Islands or the Baltic Sea. The observed morphological and geochemical characteristics of the nodules show a clear difference at the two sites, which indicates that the aqueous conditions and formation processes of the nodules in the Arctic Sea vary with the water depths.

STUDIES ON THE DIMORPHISM AND FERTILITY OF PERSICARIA JAPONICA (MEISSNER) GROSS ET NAKAI (Persicaria Japonica (MISSNER) Gross et Nakai의 이형화와 수정력에 관한 연구)

  • HARN, Chang Yawl
    • Journal of Plant Biology
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 1960
  • HARN, Chang Yawl : Studies on the dimorphism and Fertility of Persicaria japonica (MEISSNER) Gross et Nakai. Kor Jour. Bot. 3(I) 1-15 1960 Numerous investigations, since the works of DARWIN, have been made regarding the heterostylous plants by JOST (1907), CORRENS (1924), LAIBACK (1924), LEWIS (1943), and many others. Studies on the heterostylous Polygomum, however, were not reported except for the buckwhent, Fagopyrum esculentum, which was investigated by SCHOCH-BODMER (1930), EAST (1934), FROLOVA & Co-Workers (1946), MORRIS (1947, 1951) TATEBE (1949, 1951, 1953), present author (1957), and others. It is because no heterostylous species, besides buckwheat, have been known to exist in the Polygonum family. The author, during his studies on both heterostylism and fertility of Polygonaceae, has found that the species, persicaria japonica (Meissner) Gross et Nakai, is not diecious as has been known in taxonomy, but in reality beterostylous both morphologically and physiologically. It was found that this plant, regarded by taxonomist, as a male plant setting no seed, actually set seed (botanical fruit) when legitimate combination was made. Since his brief report on the dimorphic phenomens of this plant in 1956, the author's further research on the manner of fertilization has revealed that this species is a peculiar type whose dimorphism has undergone extreme specialization structurally and physiologically, the short-styled individual behaving in nature as a male plant and the long-styled individual, as female, whereas in controllled pollination the plant shows highly differentiated typical dimorphism. When compared with the other dimorphous species of this family, F. esculentum and P. sentiosa. it has been clarified that these three species differ in the degree of differentiation of their dimorphism morphologically and physiologically. That is, P. japonica has developed such a high specialization as to mislead the taxonomists, while P. senticosa shows almost no noticeable difference between long- and shortstyled individuals retaining most of the inherent physiological character cmmon to the genus except for the fact that it has two forms of flowers. F. esculentum appears to have taken the intermediate position in every respect. The result obtained in the present experiment are summarized as follows: 1) P. japonica has two kinds of individuals, one long style-short stamened; the other, short style-long stamened. The floral structure of this plants shows typical characteristics of dimorphic heterostylism. The differentiation between the two forms of flower has proceeded so highly both in primary and secondary difference of flower structure that this may be regarded as the most specialized form of dimorphism. 2) The differences of floral structure between the long and short styled individuals are remarkable compared with the other dimorphic species of the family. 3) The stamens of long styled plants show the sign of deteriolation whereas those of the short styled flower are well-developed. 4) When legitimate combinations are made, both L- and S-styled individuals are fertilized well and set seed (fruit), while in the illegitimate combination no fertilization and seed setting occur. Physiologically this species exhibits the typical behavior of dimorphic plants. 5) The self-fertile character, so common in other species of the other non-heterostyle Polygonum family, has disappeared completely. 6) Under natural conditions, no or few seed setting is observed in short styled individuals that behave as if they were male plants. 7) In hand pollination, the combination of both $L{\times}S$ and $S{\times}L$ alike yield relatively good fertility and seed-formation, the behavior of short styled individuals in artificial pollination differing remarkably from that in nature. 8) Under controlled pollination, $L{\times}S$ combination sets far more seed than in the combination of $S{\times}L$. In the S-styled individuals, the fertilized flower has the tendency of its seed more readily falling off in every stage of seed development than in the L-styled individuals. 9) The behaviors of pollen tubes just parallels the results of fertility test. That is, in the illegitimate combination, L-selfed, $L{\times}L$, S-selfed, and $S{\times}S$, the growth of pollen tubes is checked in the style, while in legitimately combined $L{\times}S$ and $S{\times}L$, the pollen tubes grow well reaching the ovaries within 40-50 minutes after pollination. The response of short styled individuals, known as male plant among taxonomists, is identical, as far as behavior fo pollen tube growth and fertilization are concerned, to that of long styled individuals, the so-called female plant. 10) The pollen grains from the short-styled plants are complete and fertile, whereas 70% of those of L-styled are found to be abortive, i.e., empty contents. 11) The remaining 30% of pollen of L-plant shows varied degree of stainability when stained with iron-aceto-carmine......mostly light red, while the pollen grains of S-style individuals are dark brown indicating complete fertility and viability. 12) The abundance of sterile pollen in L-styled and the nature of seed-dropping which occurs in S-styled individuals appear to be the main causes why the short styled individuals bear no seed in nature. Under controlled legitimate union, $S{\times}L$, the careful and elaborate pollination would give the S-styoled flowers the opportunities to receive the fertile pollens, though few in number, from L-styled plant, thus enabling S-plant to bear seed. 13) This species is not dioecious as is regarded by taxonomists, but typical dimorphic plant which has so highly specialized in floral structures and funcitons that the long-styled plant behaves just like a female individual; and the short-styled, like a male.

  • PDF