• Title/Summary/Keyword: tryptic peptides

Search Result 44, Processing Time 0.02 seconds

The Production of Functional Peptide from Whey Using Immobilized Trypsin (유청으로부터 고정화 트립신을 이용한 기능성 펩타이드의 생산)

  • Park, Yun-Joo;Yun, Yeo-Pyo;Lee, Hyung-Joo;Jang, Hae-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.99-104
    • /
    • 1996
  • Carbohydrate-free caseinomacropeptide (CMP) was isolated from the sweet whey powder by a precipitation method using 12% trichloroacetic acid. The yield of carbohydrate-free CMP was 2.7 g from 100 g sweet whey powder. The electrophoretic pattern and the amino acid analysis of CMP showed that isolated CMP was quite pure, indicating the precipitation with 12% trichloroacetic acid was very effective for isolating carbohydrate-free CMP from the sweet whey powder. Trypsin, covalently immobilized on pore glass beads by carbodiimide (EDC) method, was 20mg per 1g glass beads. CMP was almost completely hydrolyzed by soluble trypsin in 24hr, but not by immobilized trypsin. The tryptic hydrolysates were fractionated on a Bio-Gel P 4 column $(1.5{\times}120\;cm)$and separated peptides were tested for their capacities to inhibit platelet aggregation using a aggregometer. The hydrolysate obtained from CMP after 24hr digestion by immobilized trypsin showed the highest activity.

  • PDF

Cloning and Characterization of Dihydroflavonol 4-reductase (DFR) from Matthiola incana R. Br. (Stock(Matthiola incana R. Br.)으로부터 색소유전자의 분리 및 분석)

  • 민병환;김석원;오승철;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.341-346
    • /
    • 1998
  • In this paper we describe the cloning and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol 4-reductase (DFR) in Matthiola incana R. Br. A heterologous cDNA probe from Zea mays was used to isolate full-size DFR cDNA clone from a corolla-specific cDNA library. Comparison of the coding region of this DFR cDNA sequence including the sequences of Zea mays, Anthirrinum majus, Petunia hybrida, Callistephus chinensis, Dianthus caryophyllus and Rosa hybrida reveals a identity higher than 61% at the nucleotide level. The DFR transcript is G/C rich in monocotyledonous plants show a strong codon bias preferring codons with a G or C in the third position. The function of this nucleotide sequences were verified by comparison with amino acid sequences of the amino-terminus and tryptic peptides from purified plant enzyme, by northern blotting with mRNA from wild type and mutant plants and by in vitro expression yielding an enzymatically active reductase. Genomic southern blot analysis showed the presence of one gene for DFR in Matthiola incana. Northern blot analysis of the DFR wild type and mutant lines showed that the lack of DFR activity in the stable acyanic mutant k17b is clearly by a transcriptional block of the DFR gene.

  • PDF

Molecular Cloning, Sequence Analysis, and in Vitro Expression of Flavanone 3β-Hydroxylase from Gypsophila paniculata (안개초(Gyposphila paniculata)로부터 Flavanone 3β-Hydroxylase 유전자의 분리 및 분석)

  • Min, Byung-Whan
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • Flavanone 3$\beta$-hydroxylase (FHT) is an enzyme acting in the central part of the flavonoid biosynthesis pathway. FHT catalyses the hydroxylation of flavanone to dihydroflavonols in the anthocyanin pathway. In this paper we describe the cloning and expression of the genes encoding the flavonoid-biosynthetic enzyme FHT in Gypsophila paniculata L. A heterologous cDHA probe from Dianthus cavophyllus was used to isolate FHT-encoding cDHA clones from Gypsophila paniculata L.. Inspection of the 1471 bp long sequence revealed an open reading frame 1047 bp, including a 190 bp 5' leader region and 288 bp 3' untranslated region. Comparison of the coding region of this FHT cDHA sequence including the sequences of Arabidopsis thaliana, Citrus sinensis, Dianthus caryophyllus, Ipomoea batatas, Matthiola incana, Nierembergia sp, Petunia hybrida, Solanum tuberosum, Vitis vinifera reveals a identity higher than 69% at the nucleotide level. The function of this nucleotide sequences were verified by comparison with amino acid sequences of the amino-terminus and tryptic peptides from purified plant enzyme, by northern blotting with mRHA from wild type and mutant plants, by in vitro expression yielding and enzymatically active hydroxylase, as indicated by the small dihydrokaempferol peak. Genomic southern blot analysis showed the presence of only one gene for FHT in Gypsophila paniculata.

Reduction of the Antigenicity of Whey Protein by Enzymatic Hydrolysis (효소가수분해에 의한 유청단백질의 항원성 저하)

  • Ha, Woel-Kyu;Juhn, Suk-Lak;Kim, Jung-Wan;Lee, Soo-Won;Lee, Jae-Young;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.74-80
    • /
    • 1994
  • As a preliminary study about the reduction of the antigenicity of whey protein isolate(WPI) by treatment of chymotrypsin, trypsin, pancreatin, and protease from Aspergillus oryzae, the properties and antigenicities of whey protein hydrolysates(WPH) were investigated. When degrees of hydrolysis (DH) were measured by use of trinitrobenzensulfonic acid(TNBS), the DH of the WPH treated by pancreatin or protease from Aspergillus oryzae$(5.05{\sim}11.47)$ were much higher than those of the tryptic or chymotryptic WPH$(15.67{\sim}20.20)$. And the pretreatments of heat$(75^{\circ}C)$, 20 min and/or pepsin resulted in higher DH of WPH, generally. When the molecular distributions of the WPH were determined by high performance size exclusion chromatography(HPSEC), the ratios of polypeptides with molecular weight more than 10kDa ranged from 12% to 36%, and the average molecular weights and the average peptide lengths of the WPH were $4,252{\sim}9,132$ dalton and $38{\sim}83$ amino acids, respectively. And there was no bitter taste in all of the WPH. Results of SDS-PAGE showed that most of intact native proteins were eliminated by the enzymatic hydrolysis but there were a few bands of peptides larger than 14.2 kDa in some WPH. When antigenicity was assayed by competitive inhibition enzyme-linked immunosorbent assay(cELISA), monovalent antigenicity of WPH to rabbit anti-WPI antiserum were lowered to $10^{-1.7}-10^{-4.9}$ times and less by the enzymatic hydrolysis. And the pretreatments of heat and pepsin resulted in the lowest antigenicicy within a group of enzymatic hydrolysis, especially in case of the pancreatic hydrolysate(PDP) whose antigenicity was found almost to be removed.

  • PDF