• 제목/요약/키워드: trusses

검색결과 160건 처리시간 0.022초

FBG 센서를 이용한 철근 콘크리트 역쉘구조물의 시공 중 건전성 관리를 위한 지붕철골트러스 변형률 계측 (Strain Measurement of Steel Roof Truss Using FBG Sensor during Construction of Reverse Shell Shaped Reinforced Concrete Structure)

  • 이근우;임홍철;서태석
    • 비파괴검사학회지
    • /
    • 제31권4호
    • /
    • pp.335-342
    • /
    • 2011
  • FBG (Fiber Bragg Grating) 변형률 센서를 이용하여 철골트러스 지붕의 변형을 계측하였다. 이는 특수한 형태인 콘크리트 역쉘 구조물의 시공 중 안정성을 평가하기 위함이었다. 구조해석을 통하여 FBG 센서의 설치위치를 결정하였으며, 센서를 통한 변형률 값을 구조해석 값과 비교하였다. 이를 통하여 특수 구조물의 시공 중 계측을 위한 사전계측 계획의 필요성을 확인 할 수 있었고, 측정된 변형률 값이 구조해석 값을 통한 허용범위 내에 있어, 대상 구조물은 안전한 것으로 판단되었다.

Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제2권4호
    • /
    • pp.313-331
    • /
    • 2017
  • In this study, teaching-learning based optimization (TLBO) is improved by incorporating model of multiple teachers, adaptive teaching factor, self-motivated learning, and learning through tutorial. Modified TLBO (MTLBO) is applied for simultaneous topology, shape, and size optimization of space and planar trusses to study its effectiveness. All the benchmark problems are subjected to stress, displacement, and kinematic stability constraints while design variables are discrete and continuous. Analyses of unacceptable and singular topologies are prohibited by seeing element connectivity through Grubler's criterion and the positive definiteness. Performance of MTLBO is compared to TLBO and state-of-the-art algorithms available in literature, such as a genetic algorithm (GA), improved GA, force method and GA, ant colony optimization, adaptive multi-population differential evolution, a firefly algorithm, group search optimization (GSO), improved GSO, and intelligent garbage can decision-making model evolution algorithm. It is observed that MTLBO has performed better or found nearly the same optimum solutions.

Numbers Cup Optimization: A new method for optimization problems

  • Vezvari, Mojtaba Riyahi;Ghoddosian, Ali;Nikoobin, Amin
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.465-476
    • /
    • 2018
  • In this paper, a new meta-heuristic optimization method is presented. This new method is named "Numbers Cup Optimization" (NCO). The NCO algorithm is inspired by the sport competitions. In this method, the objective function and the design variables are defined as the team and the team members, respectively. Similar to all cups, teams are arranged in groups and the competitions are performed in each group, separately. The best team in each group is determined by the minimum or maximum value of the objective function. The best teams would be allowed to the next round of the cup, by accomplishing minor changes. These teams get grouped again. This process continues until two teams arrive the final and the champion of the Numbers Cup would be identified. In this algorithm, the next cups (same iterations) will be repeated by the improvement of players' performance. To illustrate the capabilities of the proposed method, some standard functions were selected to optimize. Also, size optimization of three benchmark trusses is performed to test the efficiency of the NCO approach. The results obtained from this study, well illustrate the ability of the NCO in solving the optimization problems.

스터드커넥터의 내화성능에 관한 연구 (Study on Fire Performance of Stud Connectors)

  • 김성배;한상훈;최승관
    • 한국화재소방학회논문지
    • /
    • 제23권4호
    • /
    • pp.59-66
    • /
    • 2009
  • 본 연구는 합성구조에 사용되는 스터드커넥터의 화재시 성능에 대한 연구이다. 스터드커넥터는 전단연결재로 가장 폭넓게 사용되고 있으며, 콘크리트와 강재를 일체화시켜 합성 성능을 확보한다. 스터드커넥터에 대한 상세 내화성능은 아직 명확한 자료가 없으며, 향후 성능설계에서 무피복 합성보 등에 대한 설계 자료로 요구 된다. 본 실험의 스터드커넥터 성능시험은 푸시 아웃 실험을 변형하여 특수 전기로와 결합 ISO 표준온도곡선을 기본으로 거동 성능실험을 수행하였으며, 화재 조건의 파괴 형상을 기반으로 성능 분석 방법을 제안하였다.

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

Compressive behavior of rectangular sandwich composite wall with different truss spacings

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xing-Yu;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.783-794
    • /
    • 2020
  • Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.

The Tensile Properties for Powder-driven-nail Connections for Japanese Larch Small Round Timber

  • Shim, Kug-Bo;Lee, Do-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권2호통권130호
    • /
    • pp.8-16
    • /
    • 2005
  • In an effort to encourage the development of value added engineered applications for small diameter round timber, research is being conducted to develop and verify design guidelines for connections with specific application to round timbers. The objective of this research is to provide potential users with a number of viable connection options applicable in the fabrication of engineered, round wood structural components and systems. Target uses include trusses, built up flange beams and space frames. This paper presents information on a mortised steel plate connection fabricated using powder driven nails in 6 cm diameter Japanese Larch. The design load for PDN connections are around 1.3 kN per nail with strip and 0.8 kN per nail without stripe. The design model for PDN connectors could be chosen by the number of nails. If the number of nails are more than the critical number between nail bearing and wood failure, the wood failure model could be the way to design the structure safely. The wood failure model needs to be studied more but the model could be the tensile and cleavage mixed failure model.

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • 제44권3호
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

Domain Mapping using Nonlinear Finite Element Formulation

  • Patro, Tangudu Srinivas;Voruganti, Hari K.;Dasgupta, Bhaskar;Basu, Sumit
    • International Journal of CAD/CAM
    • /
    • 제8권1호
    • /
    • pp.29-36
    • /
    • 2009
  • Domain mapping is a bijective transformation of one domain to another, usually from a complicated general domain to a chosen convex domain. This is directly useful in many application problems like shape modeling, morphing, texture mapping, shape matching, remeshing, path planning etc. A new approach considering the domain as made up of structural elements, like membranes or trusses, is developed and implemented using the nonlinear finite element formulation. The mapping is performed in two stages, boundary mapping and inside mapping. The boundary of the 3-D domain is mapped to the surface of a convex domain (in this case, a sphere) in the first stage and then the displacement/distortion of this boundary is used as boundary conditions for mapping the interior of the domain in the second stage. This is a general method and it develops a bijective mapping in all cases with judicious choice of material properties and finite element analysis. The consistent global parameterization produced by this method for an arbitrary genus zero closed surface is useful in shape modeling. Results are convincing to accept this finite element structural approach for domain mapping as a good method for many purposes.

The Structural Design of Tianjin Goldin Finance 117 Tower

  • Liu, Peng;Ho, Goman;Lee, Alexis;Yin, Chao;Lee, Kevin;Liu, Guang-lei;Huang, Xiao-yun
    • 국제초고층학회논문집
    • /
    • 제1권4호
    • /
    • pp.271-281
    • /
    • 2012
  • Tianjin Goldin Finance 117 tower has an architectural height of 597 m, total of 117 stories, and the coronation of having the highest structural roof of all the buildings under construction in China. Structural height-width ratio is approximately 9.5, exceeding the existing regulation code significantly. In order to satisfy earthquake and wind-resisting requirements, a structure consisting of a perimeter frame composed of mega composite columns, mega braces and transfer trusses and reinforced concrete core containing composite steel plate wall is adopted. Complemented by some of the new requirements from the latest Chinese building seismic design codes, design of the super high-rise building in high-intensity seismic area exhibits a number of new features and solutions to professional requirements in response spectrum selection, overall stiffness control, material and component type selection, seismic performance based design, mega-column design, anti-collapse and stability analysis as well as elastic-plastic time-history analysis. Furthermore, under the prerequisite of economic viability and a series of technical requirements prescribed by the expert review panel for high-rise buildings exceeding code limits, the design manages to overcome various structural challenges and realizes the intentions of the architect and the client.