• 제목/요약/키워드: true stress-true strain

검색결과 94건 처리시간 0.024초

상용 유한요소코드 사용자-서브루틴을 이용한 저온용 고장력강 (EH36)의 파단 시뮬레이션 (Fracture Simulation of Low-Temperature High-Strength Steel (EH36) using User-Subroutine of Commercial Finite Element Code)

  • 정준모;남웅식;김영훈
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.34-46
    • /
    • 2014
  • This paper discusses a new formulation for the failure strain in the average stress triaxiaility domain for a low-temperature high-strength steel (EH36). The new formula available at a low average stress triaxiality zone is proposed based on the comparison of two results from tensile tests of flat type specimens and their numerical simulations. In order to confirm the validity of the failure strain formulation, a user-subroutine was developed using Abaqus/Explicit, which is known to be one of the most popular commercial finite element analysis codes. Numerical fracture simulations with the user-subroutine were conducted for all the tensile tests. A comparison of the engineering stress-strain curves and engineering failure strain obtained from the numerical simulation with the user-subroutine for the tensile tests revealed that the newly developed user-subroutine effectively predicts the initiation of failure.

진삼축압축시험을 통한 마찰재료의 강도 및 변형 특성 평가 (Evaluation of Strength and Deformability of a Friction Material Based on True Triaxial Compression Tests)

  • 배준봉;엄정기;정호영
    • 지질공학
    • /
    • 제32권4호
    • /
    • pp.597-610
    • /
    • 2022
  • 중간주응력을 고려한 마찰재료의 파괴거동에 대한 확고한 이해는 대심도 보어홀 안정성 및 단층해석 등과 관련된 현장 적용의 고도화를 위한 필수적인 과정이다. 본 연구는 진삼축압축 조건을 물리적으로 구현하는 장비를 설계·제작하였으며 마찰재료로 제작된 석고 시료에 대한 진삼축압축시험을 통하여 재료의 파괴거동 특성을 논의하고 삼차원파괴함수의 적용성을 검토하였다. 진삼축압축시험을 위한 석고 재료는 52(w) × 52(l) × 104(h) mm의 직육면체 시료로 성형하였으며 다양한 조합의 𝜎3, 𝜎2의 조건으로 총 24회의 진삼축압축시험이 수행되었다. 또한, 삼차원 파괴기준식의 파라미터로 사용되는 석고의 강도정수 측정을 위하여 전통적인 일축압축시험 및 삼축압축시험이 수행되었다. 석고 재료의 응력-변형 특성은 중간주응력과 최소주응력의 차이가 클수록 취성거동이 더욱 강하게 나타났으며, 시료의 강도 및 변형은 중간주응력의 변화를 반영하는 것으로 평가되었다. 주응력 좌표계에서 시험 데이터에 대한 비선형 다중회귀분석을 수행한 결과 수정 Wiebols-Cook 파괴기준 및 수정 Lade 파괴기준이 석고 시료에 대한 삼차원 파괴기준으로 가장 적합하였다.

인공 신경망을 이용한 AZ31 Mg 합금의 고온 변형 거동연구 (High temperature deformation behaviors of AZ31 Mg alloy by Artificial Neural Network)

  • 이병호;;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.231-234
    • /
    • 2005
  • The high temperature deformation behavior of AZ 31 Mg alloy was investigated by designing a back propagation neural network that uses a gradient descent-learning algorithm. A neural network modeling is an intelligent technique that can solve non-linear and complex problems by learning from the samples. Therefore, some experimental data have been firstly obtained from continuous compression tests performed on a thermo-mechanical simulator over a range of temperatures $(250-500^{\circ}C)$ with strain rates of $0.0001-100s^{-1}$ and true strains of 0.1 to 0.6. The inputs for neural network model are strain, strain rate, and temperature and the output is flow stress. It was found that the trained model could well predict the flow stress for some experimental data that have not been used in the training. Workability of a material can be evaluated by means of power dissipation map with respect to strain, strain rate and temperature. Power dissipation map was constructed using the flow stress predicted from the neural network model at finer Intervals of strain, strain rates and subsequently processing maps were developed for hot working processes for AZ 31 Mg alloy. The safe domains of hot working of AZ 31 Mg alloy were identified and validated through microstructural investigations.

  • PDF

Deformation Behaviour of Ti-8Ta-3Nb During Hot Forging

  • Lee Kyung Won;Ban Jae Sam;Kim Sun Jin;Cho Kyu Zong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.13-18
    • /
    • 2006
  • Ti-8Ta-3Nb, as a new biomaterial, was prepared by cast and swaging process. Their deformation behavior of Ti-8Ta-3Nb alloy has been characterized on the basis of its flow stress variation obtained from the true strain rate compression testing in the temperature of $700-900^{\circ}C$ and strain rate of $0.001-10\;s^{-1}$. At the strain rates lower than $0.1\;s^{-1}$ and the all temperature ranges which consist of two phase ${\alpha}+{\beta}$ as well as single ${\beta}$ phase fields, the flow curves show a small degree of flow softening behavior. In contrast, the shapes of the flow curves at other strain rates indicate unstable behavior. The shapes of the flow curves were similar in both as-cast and swaged specimen as well as in both ${\alpha}+{\beta}$ phase and ${\beta}$ phase. The flow stress data did not obey the kinetic rate equation over the entire regime of testing but a good fit has been obtained in the intermediate range of temperatures ($750-850^{\circ}C$). In this range, a stress exponent value of about 7.7 in as-cast specimens and about 6.2 in swaged specimens with an apparent activation energy of about 300 kJ/mol and about 206 kJ/mol respectively have been evaluated.

개량 Al-0.7Mn 합금의 미세조직, 고온 변형 거동 및 성형성 (Microstructure, High Temperature Deformation Behavior and Hot Formability of Modified Al-0.7Mn alloy)

  • 강태훈;황원구;신영철;최호준;노흥렬;이기안
    • 소성∙가공
    • /
    • 제31권6호
    • /
    • pp.365-375
    • /
    • 2022
  • The microstructure and high-temperature plastic deformation behavior of the modified Al-0.7Mn alloy were investigated and compared with the conventional Al-0.3Mn (Al3102) alloy. α-Al (matrix) and Al6(Mn, Fe) phases were identified in both alloys. As a result of microstructure observation, both alloys showed equiaxed grains, and Al-0.7Mn alloy showed larger grain size and higher Al6(Mn, Fe) fraction than Al-0.3Mn alloy. High temperature compressive tests, the deformation temperatures of 410℃, 450℃, 490℃, 530℃ and strain rats of 10-2/s, 10-1/s, 1/s, 10/s, were conducted using Gleeble equipment. The flow stress values of Al-0.7Mn alloy were higher than that of Al-0.3Mn alloy at all strain rates and temperature conditions. Constitutive equations were presented using the flow stresses obtained from experimental results and the Zener-Hollomon parameter. In the true stress-true strain curves of the two alloys, the experimental and predicted values were in good agreement with each other. Based on the dynamic material model, eutectic deformation maps of Al-0.7Mn and Al-0.3Mn alloys were suggested, and the plastic instability region was presented. The modified Al-0.7Mn alloy showed a wider plastic instability region than that Al-0.3Mn alloy. Based on the process deformation maps, the MPE tube parts could be manufactured through the actual extrusion process using the suggested conditions.

정확한 비선형 파괴역학 해석을 위한 새로운 Ramberg-Osgood 상수 결정법 (On Relevant Ramberg-Osgood Fit to Engineering Non-Linear Fracture Mechanics Analysis)

  • 김윤재;허남수;김영진;최영환;양준석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.170-177
    • /
    • 2003
  • This paper proposes a robust method for the Ramberg-Osgood (R-O) fit to accurately estimate elastic-plastic J from engineering fracture mechanics analysis based on deformation plasticity. The proposal is based on engineering stress-strain data to determine the R-O parameters, instead of true stress-strain data. Moreover, for practical applications, the method is given not only for the case when full stress-strain data are available but also for the case when only yield and tensile strengths are available. Reliability of the proposed method for the R-O fit is validated against detailed 3-D Finite Element (FE) analyses for circumferential through-wall cracked pipes under global bending using five different materials, three stainless steels and two ferritic steels. Taking the FE J results based on incremental plasticity using actual stress-strain data as reference, the FE J results based on deformation plasticity using various R-O fits are compared with reference J values. Comparisons show that the proposed R-O fit provides more accurate J values for all cases, compared to existing methods for the R-O fit. Advantages of the proposed R-O fit in practical applications are discussed, together with its accuracy.

  • PDF

중간가공열처리한 AI-Li계 합금의 고온변형거동 (The Hot Deformation Behaviors of Intermediate Thermo-Mechanical Treated Al-Li Based Alloy)

  • 유창영;진영철
    • 열처리공학회지
    • /
    • 제4권3호
    • /
    • pp.1-6
    • /
    • 1991
  • In this study, intermediate thermo-mechanical treated Al-2.0 wt%Li, and Al-2.0 wt%Li-1.2 wt%Cu-1.0 wt%Mg-0.12 wt%Zr alloys were tested in tension at $10^{\circ}C$ and elevated temperature(100, 200 and $300^{\circ}C$). The results are follows : The tensile strength of Al-Li-Cu-Mg-Zr alloy is the highest but the elongation of Al-Li alloy is the highest(106%) among the all alloys in tension at $300^{\circ}C$. The Portervin-LeChartlier effect is showed in AI-Li-Cu-Mg-Zr alloy at 10 and $100^{\circ}C$, because of tangled dislocation by Mg and Cu. In the true stress-strain curves of all alloy, the peaks of stress at $300^{\circ}C$ are showed at the strain less than 0.1. In the binary alloy, the dynamic restoration process at 200 and $300^{\circ}C$ is nearly similar to dynamic recovery type. The hot deformation stress is decreased with increase of dynamic recovery degree, but the elongation is increased. When the strain the strain rate are constant, the temperature dependence of hot deformation stress is increased with increase of deformation temperature. The elongation and degree of dynamic recovery are decreased with increase of hot deformation activation energy, but the deformation stresses slightly increased.

  • PDF

정확한 비선형 파괴역학 해석을 위한 Ramberg-Osgood 상수 결정법 (On Relevant Ramberg-Osgood Fit to Engineering Non-Linear Fracture Mechanics Analysis)

  • 허남수;김윤재;최영환;양준석;김영진
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1571-1578
    • /
    • 2003
  • This paper proposes a robust method for the Ramberg-Osgood(R-O)fit to accurately estimate elastic-plastic J from engineering fracture mechanics analysis based on deformation plasticity. The proposal is based on engineering stress-strain data to determine the R-O parameters, instead of true stress-strain data. Moreover, for practical applications, the method is given not only for the case when full stress-strain data are available but also for the case when only yield and tensile strengths are available. Reliability of the proposed method for the R-O fit is validated against detailed 3-D Finite Element (FE) analyses for circumferential through-wall cracked pipes under global bending using five different materials, three stainless steels and two ferritic steels. Taking the FE J results based on incremental plasticity using actual stress-strain data as reference, the FE J results based on deformation plasticity using various R-O fits are compared with reference J values. Comparisons show that the proposed R-O fit provides more accurate J values for all cases, compared to existing methods for the R-O fit. Advantages of the proposed R-O fit in practical applications are discussed, together with its accuracy.

연속압입시험법을 이용한 소재의 기계적 물성 평가기술 연구 (Development of Evaluation Technology of Mechanical Properties Using Continuous Indentation Method)

  • 이정환;옥명렬;이윤희;안정훈;권동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.703-708
    • /
    • 1997
  • Continuous indentation test is a very powerful method to monitor the materials reliability since it is very simple, easy and almost non-destructive. It can provide material properties such as elastic modulus, yield strength, work-hardening exponent, etc., than the conventional hardness test. In our study, the true stress-strain curve is derived from the indentation load-depth curve. For this, average indentation strain is defined and the flow stress is obtained from the analysis of the indentation stress field. The residual stress is analyzed from the variation of the indentation behavior with the applied residual stress. And the estimation of fracture characteristic is tried by considering the conventional fracture toughness modeling and the stress/strain state under the spherical indenter.

  • PDF

상온압축시험에서 측정응력과 유동응력과의 관계고찰 (Review on Measured Stress and Flow Stress at Room-Temperature Compression Test)

  • 박종수;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.13-15
    • /
    • 2001
  • Compression test has been used to measure material flow stress due to limited capability of tensile test at the fast strain rate. Since the frictional stress unavoidable during compression test should be properly eliminated from the measured stress, calibration of the measured stress by using friction factor has been made for the flow stress measurement. Also, calibrated stresses by interrupted and continuous compression tests have been compared with the true stress measured by tensile test at $0.2\%$ carbon steel.

  • PDF