• Title/Summary/Keyword: tropopause

Search Result 29, Processing Time 0.026 seconds

Annual Variation and Trends of the Arctic Tropopause Pressure (북극지역 대류권계면 기압의 연변화와 변화경향)

  • Choi, Woo Kap;Kim, Hyesil
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.355-366
    • /
    • 2010
  • The tropopause pressure in the Arctic region is calculated by the conventional thermal and dynamical methods using 30-year reanalysis data. The tropopause pressures determined thermally and dynamically both show semiannual cycles with one peak in April and May, and another in October, contrary to the tropopause temperatures. Although tropopause levels are higher both in January and July, the level of the tropopause in January seems to be associated with the stratospheric temperatures while that of July seems to be associated with the tropospheric temperatures. During the 30-year period the most significant trend appears in April, and it is shown that the altitude of the Arctic tropopause has been rising. Although a potential reason for this trend is stratospheric cooling due to ozone depletion, significant tropospheric warming in April is considered to be another reason.

Numerical Simulation of the Effects of Moisture on the Reinforcement of a Tropopause Fold

  • Lee, Hong-Ran;Kim, Kyung-Eak;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.630-645
    • /
    • 2009
  • The tropopause fold event that took place on January 1, 1997 over mid-region on the Korean Peninsula is examined by means of a numerical simulation based on a Mesoscale Model (MM5). The purpose of this paper is to investigate the effects of moisture in reinforcing a tropopause fold linked to an explosive cyclone. Two types of simulations were carried out; 1) simulations for moist conditions in which full physical and dynamic processes are considered and 2) simulations for dry conditions in which cumulus parameterization and cloud microphysics process are excluded. The results of the moist condition simulations demonstrate that the intensity of the central pressure of the cyclone was overestimated compared with the observed values and that the location of the center and the pressure deepening rates (-17 hPa/12 hr) complied with the observed values. The potential vorticity (PV) anomaly on the isentropic surface at 305 K continued to move in a southeast direction on January 1, 1997 and thus created a single tube of tropopause fold covering the northern and the middle area of the Korean Peninsula and reaching the ground surface at 0300 UTC and 0600 UTC. The results of the dry condition simulations show that the tropopause descended to 500 and 670 hPa in 0300 and 0600 UTC, respectively at the same location for the moist condition simulation; however, there was no deep tropopause fold observed. A comparison of the simulated data between the moist and the dry conditions suggests that a deep tropopause fold should happen when there is sufficient moist in the atmosphere and significantly large PV in the lower atmosphere pulls down the upper atmosphere rather than when the tropopause descends itself due to dynamic causes. Thus, it is estimated that moisture in the atmosphere should have played a crucial role in a deep tropopause fold process.

Feasibility Study for Detecting the Tropopause Folding Turbulence Using COMS Geostationary Satellite (천리안 위성 자료를 이용한 대류권계면 접힘 난류 탐지 가능성 연구)

  • Kim, Mijeong;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • We present and discuss the Tropopause Folding Turbulence Detection (TFTD) algorithm for the Korean Communication, Ocean, Meteorological Satellite (COMS) which is originally developed for the Tropopause Folding Turbulence Product (TFTP) from the Geostationary Operational Environmental Satellite (GOES)-R. The TFTD algorithm assumes that the tropopause folding is linked to the Clear Air Turbulence (CAT), and thereby the tropopause folding areas are detected from the rapid spatial gradients of the upper tropospheric specific humidity. The Layer Averaged Specific Humidity (LASH) is used to represent the upper tropospheric specific humidity calculated using COMS $6.7{\mu}m$ water vapor channel and ERA-interim reanalysis temperature at 300, 400, and 500 hPa. The comparison of LASH with the numerical model specific humidity shows a strong negative correlation of 80% or more. We apply the single threshold, which is determined from sensitivity analysis, for cloud-clearing to overcome strong gradient of LASH at the edge of clouds. The tropopause break lines are detected from the location of strong LASH-gradient using the Canny edge detection based on the image processing technique. The tropopause folding area is defined by expanding the break lines by 2-degree positive gradient direction. The validations of COMS TFTD is performed with Pilot Reports (PIREPs) filtered out Convective Induced Turbulence (CIT) from Dec 2013 to Nov 2014 over the South Korea. The score test shows 0.49 PODy (Probability of Detection 'Yes') and 0.64 PODn (Probability of Detection 'No'). Low POD results from various kinds of CAT reported from PIREPs and the characteristics of high sensitivity in edge detection algorithm.

Vertical Distribution of Temperature and Tropopause Height Changes in Future Projections using HadGEM2-AO Climate Model (HadGEM2-AO를 이용한 연직기온 분포와 대류권계면 높이 변화 미래전망)

  • Lee, Jaeho;Baek, Hee-Jeong;Cho, Chunho
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • We present here the future changes in vertical distribution of temperature and tropopause height using the HadGEM2-AO climate model forced with Representative Concentration Pathways (RCPs) scenarios. Projected changes during the 21st century are shown as differences from the baseline period (1971~2000) for global vertical distribution of temperature and tropopause height. All RCP scenarios show warming throughout the troposphere and cooling in the stratosphere with amplified warming over the lower troposphere in the Northern Hemisphere high latitudes. Upper troposphere warming reaches a maximum in the tropics at the 300 hPa level associated with lapse-rate feedback. Also, the cooling in the stratosphere and the warming in the troposphere raises the height of the tropopause.

Retrieval of Thermal Tropopause Height using Temperature Profile Derived from AMSU-A of Aqua Satellite and its Application (Aqua 위성 AMSU-A 고도별 온도자료를 이용한 열적 대류권계면 고도 산출 및 활용)

  • Cho, Young-Jun;Shin, Dong-Bin;Kwon, Tae-Yong;Ha, Jong-Chul;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.523-532
    • /
    • 2014
  • In this study, thermal tropopause height defined from WMO (World Meteorological Organization) using temperature profile derived from Advance Microwave Sounding Unit-A (AMSU-A; hereafter named AMSU) onboard EOS (Earth Observing System) Aqua satellite is retrieved. The temperature profile of AMSU was validated by comparison with the radiosonde data observed at Osan weather station. The validation in the upper atmosphere from 500 to 100 hPa pressure level showed that correlation coefficients were in the range of 0.85~0.97 and the bias was less than 1 K with Root Mean Square Error (RMSE) of ~3 K. Thermal tropopause height was retrieved by using AMSU temperature profile. The bias and RMSE were found to be -5~ -37 hPa and 45~67 hPa, respectively. Correlation coefficients were in the range of 0.5 to 0.7. We also analyzed the change of tropopause height and temperature in middle troposphere in the extreme heavy rain event (23 October, 2003) associated with tropopause folding. As a result, the distinct descent of tropopause height and temperature decrease of ~8 K at 500 hPa altitude were observed at the hour that maximum precipitation and maximum wind speed occurred. These results were consistent with ERA (ECMWF Reanalysis)-Interim data (potential vorticity, temperature) in time and space.

A Case Study of Mesoscale Snowfall Development Associated with Tropopause Folding (대류권계면 접힘에 의한 중규모 강설 발달에 대한 사례 연구)

  • Kim, Jinyeon;Min, Ki-Hong;Kim, Kyung-Eak;Lee, Gyuwon
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.331-346
    • /
    • 2013
  • A case study of mesoscale snowfall with polar low signature during 25~26 December 2010 in South Korea is presented. The data used for analysis include surface and upper level weather charts, rain gauge, sea surface temperature, satellite imagery, sounding, and global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The system initiated with a surface trough near the bay of Bohai but quickly intensified to become a polar low within 12 hours. The polar low moved southeastward bringing snowfall to southwestern Korea. There was strong instability layer beneath 800 hPa but baroclinicty was weak and disappeared as the low progressed onto land. Shortwave at 500 hPa and the surface trough became in-phase which hindered the development of the polar low while it approached Korea. However, there were strong tropopause folding (~500 hPa) and high potential vorticity (PV), which allowed the system to maintain its structure and dump 20.3 cm of snow in Jeonju. Synoptic, thermodynamic, dynamic, and moisture analyses reveal that polar low developed in an area of baroclinicity with strong conditional instability and warm air advection at the lower levels. Further, the development of a surface trough to polar low was aided by tropopause folding with PV advection in the upper level, shortwave trough at 500 hPa, and moisture advection with low-level jet (LLJ) of 15 m $s^{-1}$ or more at 850 hPa. Maximum snowfall was concentrated in this region with convection being sustained by latent heat release.

Analysis of Snowfall Development Mechanism over the Korean Peninsula due to Polar Low (극저기압에 의한 한반도 강설 발달기구 분석)

  • Kim, Jinyeon;Min, Ki-Hong
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.645-661
    • /
    • 2013
  • The synoptic, thermodynamic, and dynamic characteristics of a heavy snowfall event that occurred in Seoul metropolitan area on 27 to 28 December 2010 was investigated. During this period there was a distinctive case that was identified as a polar low. We analyzed surface and upper level weather charts, snowfall amount, sea surface temperature, satellite imagery, sounding, and the National Center for Environmental Prediction global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The polar low developed in an area where there was strong baroclinicity in the lower level aided by strong conditional instability due to 925 hPa warm air advection and 700 hPa cold air advection. The development mechanism of polar low is due, in part, to the tropopause folding, which advected stratospheric air increasing potential vorticity in mid-level and inducing cyclonic vorticity and convergence in low-level. Eventually clouds developed and there were snowfall total of 10 cm in Seoul metropolitan area and as much as 20 cm in southern parts of Korea. During the snowfall development, there was a $-45^{\circ}C$ cold core at 500 hPa and shortwave maintained $3-5^{\circ}$ separation with surface trough, which favored the development of polar low located in the warm sector and cyclonic advection area. The height of the dynamical tropopause lowered to 700 hPa during the peak development and increase in potential vorticity allowed strong vertical motion to occur. Overall, there was a close relationship between the development of snowfall and tropopause undulation. The heaviest snowfall occurred east of the tropopause folding where strong cyclonic vorticity, vertical motion, and moisture advection all coincided while the polar low was passing through the Korean peninsula.

A Case Study on the Development of an Elevated Subsidence Inversion Over a Surface Low Pressure System

  • Kim, Kyung-Eak;Ko, Hye-Young;Heo, Bok-Haeng;Ha, Kyung-Ja
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.531-538
    • /
    • 2010
  • This study presents the development of an elevated subsidence inversion over a surface low pressure system, which was formed along the Changma front or Meiu-Baiu front. The results of our analysis strongly suggest that the inversion is dissimilar to those formed in anticyclonic situations but is instead similar to the onion-shaped sounding found in wake low. The present analysis indicates that the observed elevated inversion resulted from the intrusion of stratospheric air associated with tropopause folding.

Comparison of Development Mechanisms of Two Heavy Snowfall Events Occurred in Yeongnam and Yeongdong Regions of the Korean Peninsula (영동과 영남 지역에서 발생한 두 대설의 발달 메커니즘 비교)

  • Park, Ji-Hun;Kim, Kyung-Eak;Heo, Bok-Haeng
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.9-36
    • /
    • 2009
  • Two heavy snowfall events occurred in Yeongnam and Yeongdong regions of the Korean Peninsula during the period from 4 to 6 March 2005 are analyzed. The events were developed by two different meso-scale snow clouds associated with an extratropical low passing over the Western Pacific. Based on synoptic data, GOES-9 satellite images, and precipitation amount data, the events were named as Sokcho and Busan cases, respectively. We analyzed the development mechanism of the events using meterological variables from the NCEP(National Centers for Environmental Prediction) /NCAR(National Centers for Atmospheric Research) reanalysis data such as potential vorticity(PV), divergence, tropopause undulation, static stability, and meridional wind circulation. The present analyses show that in the case of Sokcho, the cyclonic circulation in the lower atmosphere in the strong baroclinic region induced the cyclonic circulation in the upper atmosphere. The cyclonic circulation in the lower and upper atmosphere caused a heavy snowfall in the Sokcho region. In the case of Busan, the strong cyclonic circulation in the upper atmosphere was initiated by the stratospheric air intrusion with the high positive PV into the troposphere during the tropopause folding. The upper strong cyclonic circulation enhanced the cyclonic circulation in the lower disturbed atmosphere due to the extratropical low. This lower cyclonic circulation in turn, intensified the upper cyclonic circulation, that caused a heavy snowfall in the Busan region.

Estimation of Vertical Profiles and Total Amount of Ozone Using Two-Dimensional Photochemical Transfer Model During the Period of 1995-1996 at Pohang (2차원 광화학수송모델을 이용한 포항지역의 1995-1996년 기간동안 오존의 연직 프로파일 및 전량 추정)

  • Moon, Yun-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.271-285
    • /
    • 2006
  • A two-dimensional photochemical transport model (2D PTM) is simulated to describe the transport and chemical reaction of ozone related to aerosols in the troposphere and stratosphere. The vertical profiles and total amounts of ozone, which are advected by both residual Eulerian circulation and the adiabatic circulation under certain circumstance, have been compared with the observation data such as ozonesondes, Brewer spectrometer, the Upper Atmosphere Research Satellite (UARS), and the Total Ozone Mapping Spectrophotometer (TOMS). As a result, we find that the observed distribution of ozone Is adequately reproduced in the model at middle and high latitude in the Northern Hemisphere as well as at Phang ($36^{\circ}\;02'N,\;129^{\circ}\;23'E$) in South Korea. In particular, the 2D PTM is well simulated in the ozone decrease due to the Pinatubo volcanic eruption in 1991. However, ozone mixing ratio are more underestimated than those of UARS and ozonesondes, because are very sensitive to the latitude of transport across the tropopause associated with both Rummukainen errors and off-line model. Relative mean bias errors and relative root mean square errors of ozone calculations using the 2D PTM are shown within${\pm}10%$, respectively.